
Copyright

by

Zachary Susskind

2024

1

The Dissertation Committee for Zachary Susskind
certifies that this is the approved version of the following dissertation:

Weightless Neural Networks for Fast, Low-Energy Inference

Committee:

Lizy Kurian John, Supervisor

Derek Chiou

Mattan Erez

Felipe Maia Galvão França

Diana Marculescu

Mike O’Connor

2

Weightless Neural Networks for Fast, Low-Energy Inference

by

Zachary Susskind

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2024

3

Acknowledgments

I have an immense amount of gratitude to express and a finite number of words

in which to do so. Writing these acknowledgments is therefore, as the cliché goes,

highly nontrivial.

To begin, I would like to express my thanks to my advisor, Dr. Lizy John, for

her unwavering support throughout this entire journey. Under her guidance, I have

developed from an enthusiastic but naive undergraduate into a confident researcher. I

am grateful for the freedom she gave me to explore new ideas, even when they didn’t

pan out, and for her invaluable advice that kept me on the right track.

Special thanks go to Dr. Mauricio Breternitz Jr., who first introduced me to

weightless neural networks. Were it not for this bit of serendipity, I likely would have

never discovered my interest in this topic and this dissertation would not exist.

I would also like to thank my committee members, Drs. Derek Chiou, Mattan

Erez, Diana Marculescu, Felipe França (IT Porto), and Mike O’Connor (NVIDIA),

for their feedback, suggestions, and scheduling flexibility. I have taken classes from

or worked closely with many of them, and have grown academically and personally

from their teaching and mentorship.

I’m grateful to all of my collaborators, both students and professors. I would

like to particularly acknowledge Alan Bacellar and now-Dr. Aman Arora. Aman was

hugely helpful with assisting me in preparing my first few papers when I still wasn’t

quite sure what I was doing, and was eternally willing to wrestle with buggy Xilinx

tools. Alan consistently came at problems with a fresh perspective, which enabled

him to sometimes see opportunities that I had overlooked.

Of course, I also have to thank all members of the WNN research working

group for their direct and indirect contributions towards this dissertation. It’s been

fantastic working with you for these last several years.

4

I also want to shout out the members of the Laboratory for Computer Archi-

tecture, including Mugdha Jadhao and Shashank Nag for their continuation of this

work, Bagus Hanindhito and Ruihao Li for their DGX server wrangling and weekly

taco deliveries, and Allison Seigler, Siyuan Ma, and Zhigang Wei for their support.

I’d be remiss if I didn’t mention our fantastic ECE department and Cockrell

School staff, including Tom Atchity, Barbara Heine, Barry Levitch, David Korts,

Lisa Contes, Leticia Lira, Melanie Gulick, and Melody Singleton. The work y’all do

is critical and often overlooked.

I’m also grateful to the Semiconductor Research Corporation for funding my

research, as well as the Cockrell Foundation and the Graduate School for providing

supporting fellowships.

Lastly, I want to thank my family, and especially my mother, for supporting

and believing in me over these past five years (and indeed these past twenty-six). It’s

been a long journey—now on to what’s next!

5

Abstract

Weightless Neural Networks for Fast, Low-Energy Inference

Zachary Susskind, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Lizy Kurian John

Despite significant advancements in efficient machine learning, deploying mod-

els such as deep neural networks (DNNs) on resource-constrained edge devices re-

mains a major challenge. Conventional approaches transform pre-trained models us-

ing methods such as pruning and quantization to make better use of limited memory

and compute resources. However, these approaches are insufficient when scaling to

ultra-low-power “extreme edge” devices, particularly when high throughput and low

latency are also desired. This domain demands approaches to machine learning which

are designed from first principles to be more efficient in hardware. While some lead-

ing approaches, such as binary neural networks (BNNs), are structurally similar to

DNNs, others are much more divergent in form. Weightless neural networks (WNNs),

a class of machine learning model which perform computation using lookup tables,

are interesting candidates in this space due to their inherent nonlinearity, efficiency

of operation, and simplicity of construction.

In this dissertation, I explore the potential of WNNs to enable fast, efficient in-

ference on the extreme edge. I first discuss BTHOWeN, which combines insights from

recent WNN literature with additional algorithmic improvements to create a state-of-

the-art weightless model with an accompanying FPGA-based accelerator architecture.

6

I next propose ULEEN, which introduces strategies to further improve the accuracy

of WNNs as well as their efficiency in hardware, including a novel multi-pass learn-

ing rule and a lookup table pruning strategy. Lastly, I introduce the DWN model

architecture, which enables models composed of multiple layers of small, directly-

connected lookup tables to be trained using a gradient-based flow. In aggregate,

these contributions yield WNNs which are fast, efficient, and readily implemented on

low-end microcontrollers or as custom hardware accelerators, achieving for instance

>2000× reduction in energy-delay product versus fully-connected BNNs in an FPGA.

Overall, this work positions WNNs as a leading approach for tiny devices.

7

Table of Contents

List of Tables . 11

List of Figures . 12

Chapter 1: Introduction . 14

1.1 Problem Description and Motivation 15

1.2 Thesis Statement . 18

1.3 Contributions of this Dissertation . 19

1.4 Organization of this Dissertation . 20

Chapter 2: Background and Related Work 21

2.1 Weightless Neural Networks . 21

2.1.1 Origins of Weightless Neural Networks 22

2.1.2 The WiSARD Classifier . 23

2.1.3 Improving WiSARD . 26

2.1.4 Other Weightless Neural Models 31

2.1.5 Weightless Neural Networks on Edge Devices 33

2.2 Deep Neural Networks . 34

2.2.1 Optimizing DNNs for Edge Inference 34

2.2.2 Binary Neural Networks . 35

2.2.3 Tabularization of DNNs . 37

2.3 Other Approaches to Efficient Machine Learning 40

Chapter 3: Methodology . 41

3.1 Model Development Methodology . 41

3.1.1 Training Weightless Models . 41

3.1.2 Converting Models for Inference 43

3.2 Model Deployment and Evaluation Methodology 43

3.2.1 Area, Power, and Performance Evaluation on FPGAs 44

3.2.2 Performance Evaluation on Microcontrollers 45

3.3 Evaluation Metrics . 45

3.4 List of Datasets . 46

8

Chapter 4: Improved Compression and Encoding for Weightless Neural Networks 48

4.1 The BTHOWeN Model . 50

4.1.1 Efficient, Hardware-Friendly Hashing 50

4.1.2 Counting Bloom Filters . 52

4.1.3 General Nonlinear Thermometer Encoding 54

4.2 BTHOWeN Software Model . 55

4.3 BTHOWeN Inference Accelerator . 58

4.4 Evaluation Methodology . 60

4.5 Results . 61

4.5.1 Selected BTHOWeN Models 61

4.5.2 Comparison with Iso-Accuracy DNN Models 62

4.5.3 Comparison with Bloom WiSARD 64

4.5.4 Comparison with Prior FPGA-based WNN 65

4.5.5 Model Sweeping Analysis . 66

4.6 Summary . 69

Chapter 5: Multi-Pass Learning with Weightless Ensembles 70

5.1 The ULEEN Model . 72

5.1.1 Multi-Pass, Gradient-Based Learning for WNNs 72

5.1.2 Additive Submodel Ensembles 74

5.1.3 RAM Node Pruning . 76

5.2 ULEEN Software Model . 79

5.3 ULEEN Inference Accelerator . 81

5.4 Evaluation Methodology . 83

5.4.1 Datasets . 84

5.4.2 Implementation . 85

5.5 Results . 86

5.5.1 Software Model Comparison of ULEEN with BNNs 86

5.5.2 FPGA Implementation Comparison of ULEEN with FINN . . . 89

5.5.3 Sensitivity Analysis . 91

5.6 Comparing ULEEN with Xilinx LogicNets 94

5.7 Summary . 97

9

Chapter 6: Multilayer Weightless Neural Networks 98

6.1 Motivation . 99

6.1.1 False Positive Rates for Bloom Filters 99

6.1.2 Elimination of Hash Computation 100

6.1.3 LUT Sharing . 101

6.2 Learning Rules for Multilayer WNNs 102

6.2.1 Finite Difference Learning Rule 103

6.2.2 LUTs as Subnetwork Equivalents 105

6.2.3 Alpha-Blending . 105

6.2.4 Extended Finite Difference . 107

6.3 Optimizing DWNs . 109

6.3.1 Regularization Strategies . 109

6.3.2 Ternary Summation . 110

6.3.3 Learnable Mapping . 111

6.3.4 Other Optimizations Explored 112

6.4 DWN Software Model . 114

6.5 DWN Inference Accelerator . 114

6.6 DWNs on Microcontrollers . 116

6.6.1 Bit-packed Implementation . 116

6.6.2 Unpacked Implementation . 118

6.7 Evaluation Methodology . 118

6.8 Results . 120

6.8.1 Selected Models . 120

6.8.2 FPGA Implementation Results 120

6.8.3 Microcontroller Implementation Results 123

6.8.4 Sensitivity Analysis . 123

6.8.5 Additional Comparisons . 125

6.9 Summary . 128

Chapter 7: Conclusion . 129

7.1 Summary . 129

7.2 Future Work . 131

Works Cited . 134

Vita . 160

10

List of Tables

3.1 List of datasets . 47

4.1 Example hyperparameter sweep values for BTHOWeN 58

4.2 Selected BTHOWeN models . 62

4.3 BTHOWeN FPGA results . 63

5.1 Additional pruning sensitivity results 78

5.2 Comparison of ULEEN and FINN software models 87

5.3 Selected ULEEN models . 88

5.4 ULEEN versus iso-accuracy FINN BNNs on FPGA 91

5.5 Selected ULEEN models for LogicNets comparison 95

5.6 FPGA implementation results for ULEEN and LogicNets 97

6.1 Different approaches to training multilayer WNNs 103

6.2 Impact of ternary summation on DWNs 111

6.3 Selected DWN model configurations 121

6.4 FPGA implementation results for DWNs 122

6.5 Microcontroller implementation results for DWNs 124

6.6 Impact of EFD and LM on DWNs . 124

6.7 Impacts of spectral normalization on DWNs 125

6.8 Performance of DWNs versus other recent LUT-based models 127

6.9 Performance of DWNs versus the FAXID XGBoost accelerator 127

11

List of Figures

1.1 Illustrations of neurons in DNNs, BNNs, and WNNs 17

1.2 A BNN and a WNN for the two-input XNOR function 18

2.1 The WiSARD model . 24

2.2 Training WiSARD . 25

2.3 “Bleaching” WNNs . 27

2.4 Thermometer encoding . 29

2.5 Bloom WiSARD . 30

2.6 Performance of prior WNNs versus DNNs and BNNs 31

2.7 RAM node pyramids in PLNs . 32

4.1 H3 hash functions in hardware . 51

4.2 Counting Bloom filters . 53

4.3 Linear versus Gaussian thermometer encoding 55

4.4 Training flowchart for BTHOWeN . 56

4.5 BTHOWeN inference accelerator architecture 59

4.6 BTHOWeN versus iso-accuracy MLPs 64

4.7 BTHOWeN versus Bloom WiSARD 65

4.8 BTHOWeN model sweeping results 67

5.1 A continuous Bloom filter . 73

5.2 An additive ensemble of submodels 75

5.3 Pruning ULEEN . 77

5.4 Pruning sensitivity study . 79

5.5 Overview of a ULEEN model during training 80

5.6 Training flowchart for ULEEN . 81

5.7 ULEEN inference accelerator architecture 83

5.8 Energy efficiency comparison between FINN and ULEEN 90

5.9 Area efficiency comparison between FINN and ULEEN 90

5.10 Sensitivity study with progressive model improvements 92

5.11 ULEEN accelerator runtime breakdown 93

5.12 Parameter sizes for LogicNets versus ULEEN 96

5.13 ROC curves for LogicNets versus ULEEN 96

12

6.1 Effective capacities of Bloom filters 100

6.2 LUT organization in multilayer WNNs 102

6.3 Subnetwork representations of LUTs 106

6.4 Gradient stability study for deeper DWN models 108

6.5 A small, trained DWN . 115

6.6 FPGA implementation of DWNs . 116

6.7 Packed DWN microcontroller implementation data layout 117

6.8 Comparison of DWNs with BTHOWeN and ULEEN 126

13

Chapter 1: Introduction

Artificial intelligence (AI) and mobile computing are advancing at blistering

paces. Thanks in large part to the popularization and maturation of deep neural net-

works (DNNs) in the last fifteen years, AI has developed from a field once infamously

summarized as “increasingly disappointing” [96] to a $240B market [136]. Concur-

rently, there are forecast to be 40 billion Internet-of-Things (IoT) devices worldwide

by 2029, up from 15.7 billion today [141]. It is unsurprising, then, that the investiga-

tion of ways to use AI on these devices is an area of very active research.

Mobile and IoT devices have some unique constraints that make them chal-

lenging targets for AI models. Very often, they are battery-operated, which means

that the energy used to run models must not be excessive. Furthermore, in order to

keep them portable and inexpensive, they have smaller and slower processors and less

memory than workstation or data-center-scale computers. By contrast, traditional

DNNs require slow and energy-hungry floating-point arithmetic operations and have

large numbers of learned “weight” parameters. The conventional way to resolve this

incompatibility is to transmit data from a mobile device to a remote “cloud” server,

which performs the actual task of running the DNN model. However, this approach

has several limitations [38]: it introduces latency (response time) due to the need to

transmit requests and responses over the network, it introduces security and privacy

concerns if the central server can not be fully trusted or is compromised, it risks

overloading this server if too many devices make requests, and it presupposes that

a reliable network connection is available in the first place. This has prompted the

emergence of the field of edge computing, which seeks to move computation to base

stations and end devices through a combination of model and hardware optimizations.

Edge devices frequently include one or more hardware accelerators: spe-

cialized processors which are far faster and more efficient than CPUs but not suitable

for general applications [165]. AI models intended for edge devices often incorporate

14

modifications which reduce their memory requirements and make them easier to run,

usually at the cost of a small amount of accuracy. Restricting models to prediction

(inference) rather than training on edge devices enables additional optimizations,

since it fixes the values of weights to constants. For instance, values can be approx-

imated using data formats that require less memory and are easier for computers to

perform arithmetic with (quantization [62]), or the least-important parameters can

be excised from the model entirely (pruning [40]). If the nature of these optimiza-

tions is known in advance, a custom hardware accelerator can be designed to take

advantage of them. When we also choose specific modifications for a model based on

their impacts on the efficiency of accelerators, this creates a feedback-driven process

known as algorithm-hardware co-design.

1.1 Problem Description and Motivation

Standardized approaches to optimizing DNNs for edge devices can yield large

improvements in efficiency. For example, quantizing a DNN from single-precision

floating-point (FP32) to the commonly-used 8-bit integer (INT8) format reduces its

memory footprint by a factor of 4 and the energy for arithmetic operations by a

factor of 20 [70]. However, these techniques have limits to their scalability, and are

insufficient to target extremely low-energy devices, particularly when high inference

throughput, low latency, or a tiny circuit area are also needed. This has lead to a

wide variety of approaches [13, 17, 18, 37, 51, 73, 100, 120, 145, 146, 152] which,

rather than optimizing a DNN for deployment on edge devices, propose new types of

AI models which are designed from first principles to be more efficient in hardware.

This avenue of research has become increasingly important with the emergence

of “extreme edge” or “mist” devices [122], which put computation directly next to

physical sensors and actuators. These devices generally include an ultra-low-power

processor, a short-range radio transceiver, and possibly a small battery—or they may

forego the battery and instead rely on harvesting energy from their surroundings or

15

from the physical phenomena they monitor. Examples include undersea submarine

detectors powered by microbial activity [104], energy-harvesting image sensors [93],

low-latency wearable biomedical monitoring devices [44], and the DARPA N-ZERO

program [117], which developed sensors for passive monitoring. Other applications

for extreme edge devices include “smart dust” projects, such as battery-free sensors

designed to be dispersed by the wind [74], and the “Industry 4.0” initiative, which

focuses on incorporating edge sensors with ultra-low latencies in manufacturing en-

vironments [45]. An overarching requirement for extreme edge devices is that they

must be able to operate for years or decades without maintenance due to the difficulty

of accessing them and the impracticality of replacing billions of tiny batteries.

This dissertation concerns a class of AI models called weightless neural

networks (WNNs) and their potential to enable fast, accurate, and energy-efficient

inference on extreme edge devices. The defining characteristic of WNNs is that they

perform the vast majority of their computation through table lookup operations [12].

In DNNs, neurons operate by computing dot products between real-valued vectors of

input activations and learned weights (Figure 1.1a). This process can be reduced into

a series of multiply-accumulate (MAC) operations. Binary neural networks (BNNs),

a related class of model, instead use Boolean values for weights and activations.

The equivalent to the dot product in a BNN is a bitwise XNOR operation, followed

by counting the number of ‘1’ bits (a population count, or popcount, operation)

(Figure 1.1b). This eliminates the need for multiplication, which is costly in hardware,

but still requires addition for the popcount. Like BNNs, the neurons in WNNs have

binary inputs and outputs. However, rather than applying parameterized arithmetic

or logical functions to their inputs, WNNs concatenate them to form integer addresses,

and use these addresses to index lookup tables (LUTs) (Figure 1.1c). Hence, a neuron

in a WNN with n inputs will form an n-bit address, index a LUT with 2n entries (one

for each combination of inputs), and can represent any one of 22n unique Boolean

functions (one for each combination of LUT entries).

WNNs can represent complex behaviors using shallow models and few neurons.

16

w1
w2

wn

+

b

x1

x2

xn

y = wTx + b

(a) DNNs use multiply-
accumulate operations.

w1
w2

wn

Σ

x1

x2

xn

y = sign(Σ¬(wi⊕xi))

(b) BNNs use XNOR-popcount
operations.

000...0
000...1

111...1
111...0

T[0]

T[2n-1]

y = T[{x1,x2,...,xn}]

x1
x2

xn
T[2n-2]

T[1]

(c) WNNs use concatenate-
lookup operations.

Figure 1.1: Illustrations of neurons in DNNs, BNNs, and WNNs.

For instance, as shown in Figure 1.2a, the smallest possible BNN to implement a two-

input Boolean XNOR function requires a total of three two-input neurons forming

two distinct layers.1 On the other hand, for the WNN in Figure 1.2b to implement the

same function, all that is needed is a single neuron composed of a two-input LUT.

The ability to use shallower models makes WNNs attractive for ultra-low-latency

applications, since the critical path of functional units that data must flow through

is shortened. Lookup tables are also efficient and straightforward to implement in

hardware—in fact, field-programmable gate arrays (FPGAs), which are commonly

used to prototype and implement accelerators, are largely composed of reconfigurable

LUTs. Furthermore, the inherent non-linearity of the LUTs which compose WNNs

gives them an interesting parallel with biological neurons. While the dendritic trees

of cortical neurons were once believed to serve little computational function, they are

now known to have complex non-linear behaviors, with individual dendrites observed

implementing the XOR function [4]. Biological neurons are extraordinarily energy-

efficient [121], so this similarity makes WNNs worth exploring.

Unfortunately, there are some very significant drawbacks to existing WNNs

that have so far relegated them to niche use cases. Since the number of entries in

a LUT grows exponentially with the number of inputs, constructing large, densely-

1By convention, BNNs treat ‘0’ inputs as -1 during the popcount, which therefore computes a
majority function treating ties as ‘1’. In Figure 1.2a, the two neurons on the first layer compute
maj(x1, x2) = x1 ∨ x2 and maj(¬x1, ¬x2) = ¬(x1 ∧ x2). The neuron on the second layer computes
maj(¬(x1 ∨ x2), ¬(¬(x1 ∧ x2)) = ¬(x1 ∨ x2) ∨ (x1 ∧ x2) = ¬(x1 ⊕ x2).

17

x1 1

1
Σ ≥0?

0

0
Σ ≥0?

0

0
Σ ≥0?

x2

(a) A BNN for ¬(x1 ⊕ x2).

00
01

1
x1
x2

0
10
11

0
1

(b) A WNN for ¬(x1 ⊕ x2).

Figure 1.2: DNNs and BNNs require multiple neurons and layers of computation to
represent most Boolean functions. As shown here, a BNN implementing the XNOR of
two inputs requires three neurons and two layers, while a WNN is trivially constructed
using a single LUT-2 neuron.

connected WNNs is impractical. For instance, a LUT which could be indexed by an

entire sample from the MNIST [92] dataset (a 28×28 image) using one bit per pixel

would require a capacity of 228×28 bits, or about 10217 exabytes. Therefore, WNNs

must use very sparse connectivity and/or data compression schemes to be feasible.

An additional issue is that their accuracies tend to lag far behind those of DNNs and

BNNs. Overall, while weightless model architectures seem well-suited for extreme

edge devices in concept, there would need to be a great deal of improvement over

prior work in both their parameter sizes and their accuracies for this to be realistic.

The objective of this dissertation is therefore to achieve these improvements through

structural changes, new training strategies, and efficient accelerator architectures.

1.2 Thesis Statement

By leveraging the nonlinearity of lookup tables, weightless neural networks

can be used to enable high-throughput, low-latency, low-energy inference on edge

devices. This is made possible through significantly improving on every aspect of

the prior work using a combination of new model architectures, improved training

strategies, and efficient hardware accelerator and microcontroller implementations.

18

1.3 Contributions of this Dissertation

This dissertation proposes novel techniques for the composition, training, and

deployment of weightless neural networks. These contributions can be divided under

the following three main topics:

1. Improved Compression and Encoding for Weightless Neural Net-

works [140]: I first propose a weightless model which resolves an incompatibil-

ity between leading techniques from prior work and introduces novel algorithmic

improvements which allow for more accurate training and more efficient infer-

ence. In addition, I introduce an FPGA-based inference accelerator architecture

for deploying models. This work, which I call BTHOWeN, outperforms the

state-of-the-art Bloom WiSARD [130] WNN in accuracy and parameter sizes

and yields more efficient hardware than quantized DNNs based on hls4ml [50].

2. Multi-Pass Learning with Weightless Ensembles [137, 138, 139]: I

next introduce a model which leverages a novel gradient-based multi-pass WNN

learning rule, a submodel ensembling technique, and a weightless pruning strat-

egy to achieve further improvements in accuracy and parameter footprint. By

using a sparsity-aware accelerator architecture with input data compression,

this work, ULEEN, outperforms fully-connected FINN [145] BNNs in latency,

throughput, and energy efficiency, with equal or better accuracy.

3. Multilayer Weightless Neural Networks [22]: Lastly, I radically rethink

how WNNs are structured by introducing a model which incorporates multiple

layers of directly-chained lookup tables, and explore learning rules that enable

propagation of gradients through table indexing operations. This restructuring

eliminates costly hash computation, granting order-of-magnitude improvements

in energy efficiency and accelerator hardware area. These models, DWNs, have

parameter sizes so minuscule that they can be deployed on a microcontroller

19

with just 2 KB of RAM, demonstrating their suitability for TinyML [2] scenarios

which focus on using inexpensive commercial off-the-shelf hardware.

1.4 Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 provides

relevant background information on WNNs, methods to optimize DNNs for the edge,

and some other prior approaches to efficient machine learning. Chapter 3 describes

the tools, libraries, and processes I used to develop software models for training and

edge implementations for inference, as well as the metrics and datasets I used for

evaluation. Chapter 4 presents the BTHOWeN model and its associated inference

accelerator. Chapter 5 describes the ULEEN model, which introduces further tech-

niques to improve the efficiency of WNNs in both software and hardware. Chapter 6

introduces the DWN model, which uses multiple layers of LUTs to enable ultra-

efficient inference on both FPGAs and microcontrollers. Finally, Chapter 7 concludes

the dissertation and discusses some potential avenues for future work.

20

Chapter 2: Background and Related Work

This chapter begins with an introduction to weightless neural networks, in-

cluding both the field as a whole and several specific models that are relevant to

understanding my contributions in this dissertation. I next discuss some of the ap-

proaches that are used to optimize deep neural networks for efficient inference, as well

as closely-related models such as binary neural networks. Lastly, I briefly summarize

some approaches to efficient machine learning that are not based on DNNs or WNNs.

2.1 Weightless Neural Networks

Weightless neural networks (WNNs) are a class of neural model which use

lookup tables (LUTs) as their fundamental computational units. WNNs operate

using the concatenate-lookup operation: a vector of inputs is concatenated to

form an integer address, and this address is used to index into a LUT, yielding a

response. Both inputs and responses are usually binary. While the entries of the

LUTs are learned parameters, these models are “weightless” in the sense that the

parameters do not act as multiplicative scalars on input activations, which is the

defining characteristic of weights in perceptrons [60] and their descendant models

including deep neural networks (DNNs) and binary neural networks (BNNs).

WNNs are of theoretical interest due to their ability to represent complex

behaviors with small, shallow models. The Vapnik–Chervonenkis (VC) dimension of

an n-input LUT is 2n, while that of an n-input neuron in a DNN or BNN is just

n+1. This indicates that LUTs are superior in their ability to represent complex

functions,1 particularly when those functions are not linearly separable. For instance,

the XNOR function can not be modeled using a single neuron in a BNN, but is

1More formally, the VC dimension of a model is equal to the cardinality of the largest set of
points that can be correctly classified by the model regardless of their labels.

21

trivially implementable using a two-input LUT in a WNN (see Figure 1.2).

2.1.1 Origins of Weightless Neural Networks

The first weightless models emerged from early experiments in optical charac-

ter recognition. Bledsoe and Browning proposed the original “n-tuple pattern recog-

nition method” for categorizing handwritten or typed alphanumeric characters by

projecting them onto a 10×15 grid of photoresistors [29]. Photoresistors were ran-

domly combined into 75 pairs, and their outputs were binarized to form 2-bit values.

The values of these pairs were then recorded for a reference sample of each character.

When a new, unknown character was presented to the model, its pair values were

computed and compared against those of each of the reference characters. The char-

acter with the most pair values in common was then taken as the prediction. This

method proved very effective for scanning typed text (where the variation between

multiple instances of the same character was minimal), but struggled with recognizing

handwriting, where letters can vary more widely in size, shape, and position.

Variants of this experiment changed the number of photoresistors in each tu-

ple from n=1 to 5, rather than just using pairs (n=2), and explored training using

multiple sets of characters. When using multiple sets, the model determined whether

the value of each tuple was shared with any instance of a particular character in the

training data, which was accomplished by using LUTs to store the observed values of

tuples. An important observation in this work was that the optimal value of n tended

to increase with the size of the training set. For very small n, model performance

was found to degrade as the amount of training data increased. This was because

too many unique values were observed for each tuple during training, meaning that

during inference, a sample would appear to be very similar to all characters. This

“saturation” phenomenon therefore made determining the correct class impossible.

Using a large tuple size with little training data resulted in the opposite problem: the

values of most tuples during inference were not associated with any output class.

22

The hardware limitations of the computers of this era restricted the scope and

complexity of the experiments that could be performed with early WNNs. Nonethe-

less, subsequent works explored extensions such as real-valued LUTs which weighted

tuple values by their frequency [28] and tuples of up to n=24 [144]. Notably, the

association between training set size and optimal n was found to eventually flatten

out, suggesting that an excessively large n results in the memorization of dataset

noise rather than useful generalization.

2.1.2 The WiSARD Classifier

The next major advancements in WNNs were driven by improvements in com-

puter memory capacity, processing speed, and availability of training data. This

progression was epitomized by the WiSARD (Wilkie, Stonham, and Aleksander’s

Recognition Device) [10] classifier. WiSARD is a canonical weightless model that

serves as the foundation for a large volume of subsequent work. A WiSARD model

is composed of n-input, 2n-entry lookup tables with learned 1-bit entries, which are

also referred to as RAM nodes. As Figure 2.1 demonstrates, binary model inputs

are randomly assigned to RAM nodes, which is similar to the construction of tuples

in the earlier work. One set of RAM nodes is constructed for each output class in

the dataset. These class-specific sets of RAM nodes are known as discriminators,

and typically share the same random mapping of inputs (i.e., the RAM node at in-

dex i in discriminator d1 will have the same inputs as the RAM node at index i in

discriminator d2).

WiSARD is trained using a single-pass learning rule, meaning each training

sample is only presented to the model once. As shown in Figure 2.2a, all RAM node

entries are first initialized to 0. Next, training samples are sequentially presented to

the discriminators corresponding to their labeled classes; for instance, Figure 2.2b

shows an input image containing the digit ‘0’ being presented to Discriminator 0,

and Figure 2.2c shows an image containing ‘1’ being presented to Discriminator 1.

The binarized values of the input pixels are combined to form RAM node addresses

23

�✁✂✄

�✁✂☎

�✁✂✆

�✁✂✝

✞✟✠✡☛

☞✌✍✍✎☛✏✏✑

✂✌✠✠✒✓✔

✕✟✓✖✗✒✘✓

�✁✂ ✓✘✍☛

✙

✚✒✏✖✎✒✛✒✓✌✗✘✎✄

✚✒✏✖✎✒✛✒✓✌✗✘✎☎

✚✒✏✖✎✒✛✒✓✌✗✘✎✜

✙✢

✙✣

✙✤

✥✦✧★✩✪✧✦

✚✒✏✖✎✒✛✒✓✌✗✘✎

✫✓✠✟✗ ✒✛✌✔☛

✬✒✭✁�✚ ✂✘✍☛✡

Figure 2.1: WiSARD, a simple WNN model for classification tasks. WiSARD contains
separate sets of RAM nodes, known as discriminators, for each output class.

according to the model’s mapping function. Next, each RAM node in the target

discriminator is indexed using its computed address, and the entry thus accessed is

set to 1. Unlike the simplified depiction in Figure 2.2, a real WiSARD model repeats

this process using many training samples for each class. However, presenting the same

training sample to a discriminator multiple times has no additional effect, since after

the first exposure, all accessed RAM node entries are already set to 1. Thanks to the

simplicity of this single-pass learning rule, WiSARD has been observed to train up

to four orders of magnitude faster than DNNs and support vector machines [33].

To perform inference, WiSARD presents a sample to all discriminators. The

values of the accessed RAM node locations within each discriminator are then summed,

producing a set of response scores. The index of the discriminator with the largest

response score is then taken to be the predicted class. Since RAM nodes only output

a 1 during inference when they are presented with a stimulus that was seen during

training, one might expect WiSARD to generalize poorly to new data. Indeed, indi-

vidual RAM nodes have no ability to generalize, and a WiSARD model consisting of

a single enormous LUT for each class would be useless. However, since each RAM

node in a typical WiSARD model is only sensitive to a small subset of inputs, it is

24

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Discriminator 0

Discriminator 1

0

0

1 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Discriminator 0

Discriminator 1

6

0

1

1

1

1

1

1 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Discriminator 0

Discriminator 1

1

6

1

1

1

1

1

1

1

1

1

1

1

1 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Discriminator 0

Discriminator 1

3

1

1

1

1

1

1

1

1

1

1

1

1

(a) (b)

(c) (d)

Figure 2.2: Training a WiSARD model. (a) All RAM node entries are initially 0.
(b,c) Training samples are presented sequentially to the discriminators corresponding
to their labeled classes, and accessed RAM node entries are set to 1. (d) For inference,
a sample is presented to all discriminators, which sum their RAM node outputs. The
index of the discriminator with the greatest sum is taken as the predicted class.

25

highly likely that at least some tuple values seen by individual RAM nodes during

inference will be identical to ones seen during training. So long as more RAM tuples

are shared with the discriminator corresponding to the correct output class than with

any other discriminator, the model will still output a correct prediction. For instance,

in Figure 2.2d, a new sample of the digit ‘0’ is presented to the model for inference.

Although just 3/6 tuple values are shared with the training data in Discriminator 0

(giving a response score of 3), only a single value is shared in Discriminator 1.

The number of inputs to each RAM node (i.e., the tuple size), n, is a crucial

hyperparameter for WiSARD models. Small values of n limit the complexities of

the behaviors each RAM node can learn. As observed in earlier work, this helps to

prevent overfitting when available training data is limited, but can result in lower

accuracy otherwise. Excessively low values of n also make WiSARD vulnerable to

saturation. Larger values of n improve accuracy (with diminishing returns) so long

as the dataset is of sufficient size and diversity to avoid overfitting, but exponentially

increase the size of the model: a WiSARD model with d classes and N inputs has a

parameter size of d⌈N
n
⌉2n bits.

WiSARD can learn sophisticated behaviors despite only having a single layer

of learnable parameters due to the nonlinearity of its LUT-based RAM nodes, which

can each represent any of the 22n Boolean functions of their inputs. WiSARD is

reasonably straightforward to implement in hardware: since computation is performed

using lookup tables, the majority of the model can be mapped to commodity memory

modules. This approach was used for the development of the WISARD/CRS1000

image processing neurocomputer, which was sold commercially in the mid-1980s for

applications such as automated defect detection.

2.1.3 Improving WiSARD

While the structural simplicity and rich representational capability of WiS-

ARD make it attractive in theory, it is unfortunately not competitive with DNNs

26

in accuracy or model parameter sizes. However, subsequent works have explored

methods to improve on both of these aspects.

2.1.3.1 Bleaching

As discussed earlier, saturation is a major problem for smaller WiSARD mod-

els. With a sufficiently large or noisy dataset, most RAM node entries are set to 1

during training, and the model loses its ability to effectively discriminate. Some early

(pre-WiSARD) WNNs attempted to address this issue by storing how often specific

tuple values occurred in the training data, rather than solely whether they occurred,

and used this information to weight RAM node outputs during inference. However,

this approach was found to perform poorly for all but very simple models [144].

Bleaching [35] is a simple but effective strategy to avoid saturation in WiS-

ARD. The bleaching strategy replaces the single-bit RAM node entries with counters,

which are incremented each time a tuple value is seen during training. During infer-

ence, a bleaching threshold b is determined to binarize the RAM, with counter values

greater than or equal to b interpreted as 1 and values less than b interpreted as 0.

Figure 2.3 shows a simple example of this: when b is chosen to be equal to 15, all

patterns seen fewer than 15 times during training are discarded.

24
0
17
42
13
9
1
37

b=15
1
0
1
1
0
0
0
1

Figure 2.3: The bleaching process replaces binary RAM node entries with counters,
which are incremented each time they are accessed during training. After training, a
threshold b is used to binarize counter values.

27

Several strategies have been explored for choosing b. Bleaching can be used

dynamically to break ties during inference by increasing b whenever the top two

discriminator responses are close to equal, or it can be applied statically. A static

choice of b avoids the potential need to run inference multiple times for a single

sample. It also allows the counter tables to be permanently replaced with binary

RAMs, which reduces the model’s memory footprint. However, a static choice of b

which is too small will not eliminate saturation, while a choice which is too large will

result in poor performance since only the most common patterns will be retained.

Therefore, many candidate values of b should be evaluated for static bleaching.

2.1.3.2 Thermometer Encoding

WiSARD conventionally binarizes inputs by comparing them against their

mean values in the training data. However, a great deal of information is lost with this

approach. Multi-bit binary integer encodings, like those used for quantized DNNs,

are poor choices for WNNs since each bit is treated independently when forming

addresses. For instance, the least significant bit of an 8-bit integer, taken in isolation,

does not provide any meaningful insight into the integer’s value, and should not be

used in addressing. Multi-bit unary “thermometer” encodings [80] are instead the

preferred approach for WNNs. A thermometer encoding compares a value against

a series of increasing thresholds, setting input bits from least to most significant as

progressively more thresholds are surpassed. As shown in Figure 2.4, this technique

is conceptually similar to (and named after) mercury passing the lines on an analogue

thermometer.

Nonlinear Thermometer Encoding: Thermometer encoding thresholds are usu-

ally picked to split the value range for an input into equal intervals. However, this may

not be ideal if an input follows a known, nonuniform distribution. For instance, many

processes in particle physics follow distributions that are approximately Gaussian. A

28

13579111315

1200111111

Figure 2.4: In a unary thermometer encoding, an input is compared against a series
of increasing thresholds, with result bits set from least to most significant.

prior work [157] exploring WiSARD in this domain achieved significant accuracy ben-

efits by using nonlinear separations between thresholds.

2.1.3.3 Bloom WiSARD

While increasing the tuple size n can improve the accuracy of WiSARD models,

it also exponentially increases their memory footprint. However, large RAM nodes

tend to be highly sparse, meaning most entries are still 0 after training. Therefore,

rather than implementing RAM nodes using LUTs, Bloom WiSARD [130] proposes

using hash-based data structures such as Bloom filters as RAM nodes. An example

discriminator with RAM nodes implemented in this way is shown in Figure 2.5.

A Bloom filter [30] is composed of a small lookup table and a set of independent

hash functions. During training, inputs to the filter are hashed using each of these

functions to form a set of addresses, and all indicated locations in the LUT are set to

1. During inference, the Boolean AND of the accessed locations is taken as the filter

output. Bloom filters are approximate data structures, meaning they will sometimes

produce erroneous output. They will never produce false negatives, so they always

output 1 in response to patterns seen during training, but they are susceptible to

false positives. The false positive rate for a Bloom filter is a function of the size of the

RAM, the number of hash functions, and the number of patterns stored [63]. This

creates a tradeoff between Bloom filter LUT size and model accuracy. In practice,

29

RAM1

RAM2

RAM3

RAM4

h1(x)
h2(x)

h1(x)
h2(x)

h1(x)
h2(x)

h1(x)
h2(x)

RAM0

RAM1

RAM2

RAM3

Bloom Filter

Figure 2.5: Bloom WiSARD uses Bloom Filters, rather than LUTs, as RAM nodes.
This introduces additional complexity from hash computation and risks RAM nodes
emitting false positives, but can greatly reduce the model’s parameter size.

Bloom WiSARD can frequently decrease the parameter size of a WiSARD model by

2000× with minimal impact on accuracy.

2.1.3.4 Results for Prior Work

Figure 2.6 compares the baseline WiSARD model and weightless models using

the three enhancements discussed against DNNs and BNNs on the MNIST [92] hand-

written digit recognition dataset. As this figure shows, while prior work has been

quite effective in reducing the parameter size of WiSARD and somewhat effective in

improving its accuracy, there is still a wide gap from the weighted models. Therefore,

there is a clear need for additional work in this domain.

30

WiSARD (1981)

Bleaching (2010)

Thermometer (2015)

Bloom WiSARD (2019)

DNN (MLP)

BNN
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

Te
st

 E
rro

r %

1 MB

10 MB

100 MB

1 GB

10 GB

M
od

el
 P

ar
am

et
er

 S
ize

Error - WNNs
Error - DNNs
Model Size

Figure 2.6: Performance of prior WNNs versus fully-connected DNN and BNN models
on the MNIST [92] dataset.

2.1.4 Other Weightless Neural Models

So far, this section has focused primarily on WiSARD and related models.

While these are the most common types of WNNs, there are many other approaches

that have been explored [12, 101], several of which are relevant to this dissertation.

2.1.4.1 Probabilistic Logic Nodes

The Probabilistic Logic Node (PLN) [6, 9] introduces a new “unknown” u

state for each RAM node entry, which is interpreted as a 0 or a 1 with probability

0.5 during training. All RAM nodes are initially filled with u. The goal of training is

to replace all instances of u with a 0 or a 1, making inference deterministic.

A key structural feature of PLNs is the pyramid, shown in Figure 2.7. A

pyramid consists of a hierarchy of RAM nodes connected as a tree. This helps to

31

avoid state explosion while still enabling the pyramid to be sensitive to all inputs.

For instance, implementing a 64-input LUT requires 2,097,152 TiB of storage. On the

other hand, a three-layer pyramid of LUT-4s with 64 inputs only requires 42 bytes

of storage. Although a pyramid clearly can not represent any function of its inputs,

multiple pyramids can be used with different connectivities to compensate for this.

Figure 2.7: A pyramidal structure of RAM nodes, which is used to reduce parameter
sizes in models such as PLNs and MPLNs. Figure from [6].

Multi-Level PLNs: The Multi-level PLN (MPLN) [108] extends the PLN by al-

lowing for multiple “unknown” states with different probabilities during training. As

with PLNs, inference is deterministic.

2.1.4.2 Goal-Seeking Neurons:

Unlike the PLN and MPLN, the Goal-Seeking Neuron (GSN) [55] allows u

values to be directly output by RAM nodes during training. A u in an address is

treated as both a 0 and a 1; for instance, the address 0u1u would expand to {0010,

0011, 0110, 0111}. RAM nodes in a GSN model output a 0 or a 1 if all addressed

entries are equal to that value, and a u otherwise.

32

2.1.4.3 Training

Multiple training strategies have been proposed for multi-layer models such as

PLNs, MPLNs, and GSNs. Many are based on backwards depth-first search strate-

gies [6, 55] which seek to iteratively replace u values with 0 or 1 to maximize model

accuracy. Other approaches, such as generalizing RAMs [11], seek to extrapolate to

patterns that were not seen during training by looking at the behavior of the model in

response to other patterns at short Hamming distances. Unlike the single-pass learn-

ing rule used for WiSARD, these strategies often make multiple passes through the

data, adjusting values in the RAM nodes to satisfy predicates until some termination

condition is met (such as all u values being eliminated). Note that these are very

different from the multi-pass gradient-based learning rules which are used to train

models such as DNNs, as they make discrete rather than continuous updates.

Unfortunately, these approaches to training are often very complex and have

never been fully developed to reasonable accuracies. Most works in this domain are

only evaluated on toy problems, and others underperform WiSARD on real datasets.

For instance, one work [112] based on MPLNs achieved just 84% accuracy on a

simplified, four-class variant of MNIST.

2.1.5 Weightless Neural Networks on Edge Devices

There have been several prior works which explored WNNs in edge con-

texts [7, 112, 142]. While many of these works were targeted at narrow scopes,

one work [53] explored the feasibility of implementing an FPGA-based hardware ac-

celerator for training and inference with WiSARD. This design used hash tables to

reduce the memory footprint of the model, though unlike Bloom WiSARD it included

mechanisms for hash collision detection. This accelerator achieved 90.73% accuracy

on the MNIST dataset, slightly lower than Bloom WiSARD.

33

2.2 Deep Neural Networks

Deep neural networks (DNNs) span a diverse range of model architectures,

including multi-layer perceptrons (MLP) [125], convolutional neural networks [91],

and transformers [149]. DNNs are the dominant approach to machine learning today,

and there are many strategies which have been explored to optimize them.

2.2.1 Optimizing DNNs for Edge Inference

Neurons in DNNs compute dot products between a data-dependent input acti-

vation vector and a learned weight vector. Therefore, the fundamental mathematical

operation in a DNN is the multiply-accumulate (MAC), c += a · b. Neurons are

composed into layers, which are stacked interspersed with other layers such as nonlin-

ear activations to form full models. Reducing the cost of a single MAC, the number

of MACs per neuron, the number of neurons per layer, and the number of layers in a

model are all viable ways to optimize DNNs for more efficient inference.

2.2.1.1 Quantization

DNNs were historically implemented using 32-bit floating point (FP32) weights

and activations. However, more recent work has demonstrated that the range and

precision of this data type are greater than what is actually needed. For instance, the

high-throughput tensor cores of the NVIDIA H100 GPU natively support the 19-bit

TF32, 16-bit FP16 and BF16, and 8-bit E3M4 and E5M2 floating-point data formats;

notably, they do not support FP32 [114]. While training with FP8 weights and

activations requires some modifications to the backpropagation algorithm [126, 154]

normally used to train DNNs in order to limit the dynamic range of gradients [115],

it yields a 4× reduction in memory footprint and 4× increase in peak throughput

versus TF32.

Quantization is a technique by which a DNN is modified to use simpler data

types for weights and activations after training in order to reduce the memory foot-

34

print and computational cost of inference [62]. Generally, inference with DNNs needs

less numerical precision than training, since it is no longer necessary to represent

gradient-based updates in the backpropagation phase [124]. 8-bit integers (INT8)

are a common choice [75, 77], and reduce hardware area and energy by ∼50% versus

FP8 [148]. Cutting-edge techniques enable INT4 [41, 66] and even INT2 [36] quanti-

zation. These smaller data types further reduce hardware area and inference energy.

However, quantizing this aggressively can significantly reduce accuracy.

2.2.1.2 Pruning

Pruning is a process which eliminates connections within a DNN by forcing

weight or activation values to 0 [8, 103, 113, 163]. Since the product of any number

with 0 is 0, and any number plus 0 is itself, a MAC operation can be skipped if

one of its inputs is known to have been pruned. Specialized hardware accelerators

can exploit this data sparsity to improve efficiency [79, 114, 164]. More aggressive

approaches to pruning DNNs aim to eliminate convolutional filters [69], or even entire

layers [32, 52, 128]. With these approaches, a single, large model can be trained once,

then progressively cut down to target different design points for inference.

Pruning is usually performed after training, and potentially followed by an

additional fine-tuning pass. However, some works have explored dynamic pruning

during training [89, 97], or even at initialization time [46, 81, 151].

2.2.2 Binary Neural Networks

Binary neural networks (BNNs) [43, 58, 123] are the limit case of quantization,

as they use single-bit values for weights and activations. Binarizing weights and

activations to {-1, +1} simplifies multiplication to an XNOR gate. BNNs take the

XNOR of their input activations with a learned binary vector, sum this vector, and

compare the result against a learned or fixed threshold. These “XNOR-popcount”

operations are much more efficient than MAC operations in both energy and hardware

35

area. However, BNNs generally require 2–11× more parameters and operations to

reach the same accuracy as a full-precision DNN [145].

Ternary Weight Networks: Ternary Weight Networks (TWNs) [13, 94, 99, 166]

are a closely related category of model that constrain weights and activations to

{-1, 0, +1}. The accuracy of TWNs has been shown in some cases to be only slightly

worse than full-precision DNNs.

2.2.2.1 Training BNNs with Straight-Through Estimators

When developing a DNN with very low precision, it is difficult to apply quanti-

zation as a post-training operation without causing a large drop in accuracy. Instead,

it is often better to use quantized weights and activations during training as well.

However, training a neural network using backpropagation requires weights to be

continuous-valued to enable gradient-based updates. To circumvent this issue, BNNs

store weights internally as floating-point values between -1 and 1, and binarize them

using the sign function (Equation 2.1). However, this introduces a new problem: the

derivative of the sign function (Equation 2.2) is poorly behaved, as it is 0 almost

everywhere and infinite at x = 0. This means that, during backpropagation, gradi-

ents that are passed backward through the sign function to the weights will either be

cancelled to 0 or explode to ±∞.

sign(x) =

{
−1 x < 0

1 x ≥ 0
(2.1) sign′(x) =

{
+∞ x = 0

0 x ̸= 0
(2.2)

To resolve this issue, BNNs employ an approach known as the straight-

through estimator (STE) [161]. The STE function behaves identically to the sign

function during the forward training pass (Equation 2.3). However, its derivative

(Equation 2.4) is different, being instead equal to that of the HardTanh function.

This “proxy gradient” approach, though mathematically inaccurate, prevents gradi-

36

ent cancellation, and has been shown both empirically and theoretically to enable

BNN convergence.

STE(x) =

{
−1 x < 0

1 x ≥ 0
(2.3) STE′(x) =

{
1 |x| ≤ 1

0 |x| > 1
(2.4)

2.2.2.2 Hardware Implementations of BNNs

Thanks to the computational simplicity and small parameter sizes of BNNs,

they are appealing models for targeting energy-efficient hardware implementations.

Both FPGA and ASIC implementations exist [16, 95]. Notably, Xilinx has devel-

oped the Brevitas [118] library for training low-precision quantized and binary neural

networks, and the FPGA-based FINN [145] platform to deploy BNNs for inference.

2.2.2.3 Other Approaches to Low-Precision Training

While the STE is a common approach for training ultra-low-precision models

such as BNNs, it is not used universally. For instance, alpha-blending [100] represents

weights as an affine combination of the unquantized (full-precision) and quantized

versions of underlying learned parameters. During training, the quantized represen-

tations of weights are progressively favored by gradually increasing the non-learned

parameter α from 0 to 1. For instance, when training a BNN using alpha-blending,

a weight is given by (1 − α)w + α sign(w), where w is the trained parameter. This

allows a fraction (1− α) of the gradient to be backpropagated to w.

2.2.3 Tabularization of DNNs

Other approaches to optimizing DNNs replace arithmetic operations with table

lookups. After training a model, partial results can be precomputed and stored in

LUTs to be used during inference. A variety of methods have been proposed.

37

2.2.3.1 LogicNets

Xilinx’s LogicNets [146] model is a sparsely-connected DNN constructed out

of neuron equivalent (NEQ) units. An NEQ has γ inputs of β-bit precision and a

single β-bit output. The NEQ has learned internal weight and bias values with full

FP32 precision, and quantizes its output using the STE.

As each input has 2β possible values, each NEQ can be represented using a

lookup table (LUT) with a total size of β2βγ bits. The converted NEQs can then be

combined into a netlist and passed to an FPGA synthesis tool. Logic optimizations

performed during synthesis allow the final hardware area to be much smaller than a

naive implementation of the LUTs.

Some subsequent works [17, 18] have expanded on this model by using more

sophisticated structures (such as multi-layer DNNs) within NEQs, while maintain-

ing their sparse, low-precision connectivity externally. LogicNets also bears strong

similarities to some much earlier work [31, 54] on tabularizing sparse DNNs.

2.2.3.2 LUTNet

LUTNet [152] proposes a “logic expansion” scheme which transforms the

XNOR operators in a ternary weight network into LUTs. The first input to a LUT

is chosen to be the original input activation for the XNOR gate it replaced, while

the rest are picked randomly. These LUTs are then fine-tuned in an additional train-

ing pass, with their entries treated as the coefficients of a Lagrange interpolating

polynomial. This process was found to give FPGA area and accuracy superior to

conventional BNNs.

2.2.3.3 Approximate Matrix Multiplication

Approximate matrix multiplication (AMM) techniques convert the dot prod-

uct between a weight and activation vector into a series of table lookups. Drawing

from the Product Quantization (PQ) [78] method for approximate nearest neigh-

38

bor search, AMM techniques split an input activation vector into disjoint subspaces,

identify the nearest neighbor from a set of “prototype” vectors in each subspace, and

then sum the partial dot products for each prototype. If this technique is used for

inference, the weight vector is fixed, and therefore the partial dot products can be

precomputed and stored in lookup tables.

The MADDNESS [27] algorithm for AMM uses K-means clustering on input

activations across the training data to identify prototype vectors. Earlier techniques,

such as PQ, used Euclidean distance to identify the nearest prototype to the acti-

vation vector within each subspace. However, this introduces a significant number

of multiplications. Instead, MADDNESS uses a locality-sensitive hashing technique

which uses learned parameters but is arithmetic-free at inference time. It also in-

troduces a lightweight technique for optimizing prototypes based on ridge regression.

Overall, the only arithmetic operations MADDNESS requires during inference are

the summations of partial dot products across subspaces. Recent work [162] refined

this technique for multi-layer and transformer-based DNN architectures, and used it

to develop a hardware prefetcher that outperformed state-of-the-art approaches.

2.2.3.4 Direct Conversion

Quantized DNNs with very few inputs can be converted directly into lookup

tables. However, this is not a general-purpose technique since its memory footprint

scales exponentially with the number of inputs to the model. This technique was

applied to image upscaling by restricting the receptive field of the upscaling kernel

to 2–4 pixels, resulting in a final model size of <1.3 MB [76]. The resultant model

outperformed traditional methods of image upscaling such as bilinear filtering with

comparable latency, though it could not match the performance of (much slower)

large neural models.

39

2.3 Other Approaches to Efficient Machine Learning

There have been countless approaches proposed for efficient machine learning

which are not based on DNNs or WNNs. This section lists a few examples.

• XGBoost [39] is based on ensembles of decision trees. It is notable for its scal-

ability and high performance, and gives excellent results for many applications

based on tabular data.

• Hyperdimensional computing [61] represents data using high-dimensional

random “hypervectors”, so that the cosine similarity between any two unrelated

hypervectors is approximately 0. Transformations are applied to hypervectors

to manipulate and combine data points. Classification can be performed by

learning class hypervectors, then determining which of them is most similar to

a given inference sample.

• DiffLogicNet [120] learns networks of two-input logic gates. It uses a gradient-

based learning rule where each functional unit maintain weights for each of the

16 possible two-input Boolean functions it could represent, which are converted

into probabilities using a softmax function. During inference, functional units

are converted into the gate with the highest associated probability.

• Tiny Classifier circuits [73] are networks composed of a small number (50–

300) of two-input NAND gates. The connectivity between gates is learned via

graph-based genetic programming. Despite their tiny sizes, these models are

competitive with XGBoost on many datasets.

• Tsetlin Machines [64] are networks composed of Tsetlin automata, which

learn conjunctive clauses of arbitrarily many variables. Clauses are assigned

positive or negative polarity, with majority voting used to determine outputs.

Unlike RAM nodes in WiSARD, groups of Tsetlin automata can learn Boolean

functions of arbitrarily many inputs without encountering state explosion. How-

ever, each automaton is only capable of learning a single conjunctive clause.

40

Chapter 3: Methodology

This chapter provides an overview of the specific processes I used to develop,

deploy, and evaluate weightless models and accelerator architectures. I first discuss

the software tools and techniques I used to train models and convert them to more

efficient forms for inference. Next, I discuss the FPGA and microcontroller deploy-

ment scenarios that I explored for these models. Lastly, I discuss the metrics and

datasets which I used for evaluation.

3.1 Model Development Methodology

I wrote the code for training models primarily in Python in order to leverage

its excellent ecosystem support for scientific computing and machine learning appli-

cations. This enabled me to iterate rapidly on model prototypes. Once models were

trained, I converted them into more efficient forms for edge inference. To accomplish

this, I used a templated metaprogramming strategy to semi-automatically instanti-

ate SystemVerilog (for FPGA deployment) or C++ (for microcontroller deployment)

code which implemented the trained model without external dependencies.

3.1.1 Training Weightless Models

My first weightless model, BTHOWeN (Chapter 4), uses a single-pass learning

rule related to the method used by WiSARD. I implemented training for BTHOWeN

using the NumPy [67] library for scientific computation. NumPy provides a high-

level API based on multidimensional “ndarray” objects, which invokes a C backend

to perform logical and arithmetic operations. This backend has been extensively

optimized to take advantage of features such as x86 SIMD extensions, which makes

NumPy highly performant; in fact, a prior work observed that benchmarks rewritten

in Python with NumPy were sometimes faster than their native C versions [3].

41

I used the Numba [90] library to further optimize key kernels. Numba is

a JIT compiler for Python which focuses on supporting only a narrow subset of

language features—in particular, array-oriented computation using NumPy ndarrays.

It transforms Python bytecode into an LLVM intermediate representation, which is

then used to produce machine code. The advantage of Numba is that it completely

eliminates the overhead of the Python interpreter for compiled kernels, which can

otherwise be a bottleneck for NumPy applications. However, it has a very restrictive

syntax which often requires significant restructuring of code, which may not be worth

the effort for non-critical functions.

My subsequent models, ULEEN (Chapter 5) and DWN (Chapter 6), use

backpropagation-based learning rules. Therefore, I developed the code for training

these models by extending the PyTorch [19] library. PyTorch is a highly performant

library for machine learning with GPU acceleration. It provides a powerful “auto-

grad” engine for automatic calculation of derivatives of functions. However, since

PyTorch is primarily intended for use with DNNs, it lacks the WNN-specific func-

tionality that I needed for my research. Thankfully, PyTorch provides multiple ways

to write and incorporate custom extensions.

The most straightforward way to extend PyTorch is to create a custom mod-

ule as a subclass of torch.nn.Module. This allows for the specification of custom

trainable parameters and mathematical operations, and hooks directly into the auto-

grad engine, which eliminates the need to write code for the backward training pass.

However, the autograd engine is not able to handle functions such as straight-through

estimators. In these cases, it is necessary to extend autograd itself through a custom

torch.autograd.Function, in which both the forward and backward training passes

must be explicitly implemented.

Custom extensions to PyTorch can be bottlenecked by the overhead of the

Python interpreter. To resolve this, PyTorch allows functions to be written in C++

using the LibTorch library and hooked into a Python wrapper using the Ninja build

42

system with torch.utils.cpp extension. Additionally, LibTorch can be interfaced

with handwritten CUDA kernels, which enables optimizations such as kernel fusion.

I used these approaches for the most performance-critical pieces of my training code.

3.1.2 Converting Models for Inference

The end result of the training process is a Python object representing the

complete, trained model. The next step is to convert this object into equivalent

SystemVerilog or C++ source code for inference on an edge platform. One approach

would be to convert the entire model into a header file representing its parameters and

hyperparameters, and then write the code for inference in a way which used this file for

initialization (for instance, through heavy use of SystemVerilog generate for loops).

This is difficult, however, since functional units which vary in behavior based on the

model would have to be carefully parameterized within the constraints of the target

language’s preprocessor. Therefore, I chose to instead implement templated source

files, which were specialized to produce inference source code for specific models. I

created these templates using the Mako [24] Python library.

Mako enables the embedding of Python snippets into code written in arbitrary

languages, which are then used to produce source code in the target language as a

“pre-preprocessing” step. This style of metaprogramming is particularly useful for my

work since my models are already represented as Python objects, and can therefore

be directly manipulated by Mako.

3.2 Model Deployment and Evaluation Methodology

When deploying a machine learning model on the edge, there are effectively

two options: design a custom accelerator, or write software for a commercial off-the-

shelf platform. For most of my analysis, I used the former approach, since hardware

accelerators are generally much faster and more efficient than software solutions. I

focused primarily on FPGA-based solutions to aid in comparison with prior work.

43

However, using a custom accelerator in a commercial product is expensive.

FPGAs have a high unit cost, which makes them undesirable for mass-produced de-

vices, while ASICs have very high non-recurring engineering costs due to the expense

of producing a custom set of masks. Therefore, I also performed some experiments

using a low-cost commodity microcontroller.

3.2.1 Area, Power, and Performance Evaluation on FPGAs

I targeted several Xilinx FPGAs with my experiments to aid in comparison

against different prior works. For BTHOWeN and ULEEN, I used Xilinx Vivado

2019.2 for all experiments, while for DWN I used Vivado 2022.2. After synthesis

and implementation, I used Vivado’s included power model and utilization reports

to gather the dynamic power, static power, and hardware area of designs. In a few

cases, prior works that I compared against did not publish power results. For these

models, I used Xilinx Power Estimator [160], a spreadsheet-based analytical modeling

tool, to estimate device power.

To check the functional correctness of designs, and to measure latency and

throughput, I simulated several testbenches using Synopsys VCS and analyzed wave-

forms with DVE. In addition to simple unit-level tests, I also created a testbench

which could run inference on a simulated accelerator using a complete dataset. I used

a Python script to convert test data into a binary format, which was then loaded into

the testbench using a $fread directive. By comparing the predictions of the software

model to the simulated accelerator over thousands of samples, I could attain a high

degree of confidence that the design was functionally correct.

44

3.2.2 Performance Evaluation on Microcontrollers

I also performed some experiments using an Elegoo Nano, which is a direct

clone of the open-source Arduino Nano, a low-cost commodity microcontroller.1 The

Nano is based on the ATMega328P, which at time of writing retails for $1.52 in

volume. By contrast, even low-end FPGAs can cost hundreds of dollars.

The ATMega is an 8-bit in-order processor for the AVR RISC ISA with a

two-stage pipeline and no instruction or data caches. It provides 2 KB of SRAM, 30

KB of Flash memory, and runs (in the Nano) at a frequency of 16 MHz. Obviously,

the throughput and energy efficiency of this device can not come anywhere close to a

custom hardware accelerator. However, models such as DNNs and BNNs are generally

impractical on such a limited device. Therefore, my goal with these experiments was

to demonstrate the viability of WNNs in ultra-low-cost deployment scenarios.

All models which I ran on the Nano (both my work and comparison models)

communicated with a host PC over a 1 Mbps serial connection in order to read

in samples and write back predictions. This is an atypical baud rate for a serial

connection. I chose this specific value based on the ATMega’s datasheet, as it is the

highest feasible value which is an exact divisor of the Nano’s clock frequency. In

theory, the Nano supports 2 Mbps transfer using “double speed USART” mode, but

I found that this was unstable and resulted in frequent bit errors.

3.3 Evaluation Metrics

I compared the efficiency of my models against prior work in both software and

hardware implementations. When examining the efficiency of the models themselves,

I focused on the accuracy and parameter sizes of designs. When comparing hardware

efficiency, I considered model throughput, latency, area, and energy. Directly com-

1This should not be confused with the similarly-named Nano 33 BLE, which has a much more
powerful processor and far more memory.

45

paring the areas of designs on FPGAs is difficult since different functional units (e.g.,

LUTs, flip-flops, DSP slices, and block RAMs) have different sizes. Unfortunately,

Xilinx does not provide the relative component areas which would be necessary to

derive a normalized total circuit area. Therefore, I used LUT count as a proxy for

circuit area. This metric is generally favorable to prior work, since the accelerator

architectures I designed for WNNs do not use DSPs or BRAMs.

One factor I did not consider in my evaluations was the training time of models.

This information is not available for many prior works, and was regardless not the

focus of my experiments. The memory access patterns of WNNs are structured in

a way that is not cache-friendly for CPUs or GPUs, so they were usually memory-

bound during training. I was also generally willing to explore optimizations that

increased the training time of models if they also increased the accuracy or inference-

time efficiency of the final result. Regardless, the largest WNN models I discuss in

this dissertation can be trained in less than a day on a single NVIDIA A100 GPU.

3.4 List of Datasets

Table 3.1 provides a listing of and citations for the datasets I used in this

dissertation. I give additional brief notes where relevant.

46

Dataset Name Source Notes

MNIST [92] Classic image classification dataset
FashionMNIST [158] Same size as MNIST but more difficult.

KWS [153] Subset of dataset; part of MLPerf Tiny [23].
ToyADMOS/car [84] Subset of dataset; part of MLPerf Tiny [23].
VWW [98] Subset of dataset; part of MLPerf Tiny [23].
CIFAR10 [87] Part of MLPerf Tiny [23].

Ecoli [110]

Assorted tabular datasets of
varying sizes and complexities

Iris [15, 56]
Letter [132]
Satimage [134]
Shuttle [111]
Vehicle [107]
Vowel [47]
Wine [5]
Phoneme [14]
Skin-seg [26]
Higgs [155]

UNSW-NB15 [106] Network intrusion detection dataset.
BoT-IoT [86] Network intrusion detection dataset.
JSC [50] Particle physics; same paper proposed hls4ml platform
Madeline [1]
Fraud Detection [147]

Table 3.1: List of all datasets used in this dissertation.

47

Chapter 4: Improved Compression and Encoding

for Weightless Neural Networks1

The proliferation of IoT devices and embedded sensors, combined with the

desire for private, scalable, and low-latency machine learning, motivates a need for

efficient edge inference. WNN models such as WiSARD in theory seem well-suited

to this domain. Table lookups are computationally simple and energy-efficient op-

erations, and their nonlinearity enables WNNs to represent complex behaviors with

shallow models, reducing inference latency. However, two major issues that have

so far prevented the widespread adoption of WNNs are their large parameter sizes,

which limit their usefulness on memory-constrained devices, and their poor accuracy

compared to state-of-the-art approaches. Therefore, edge inference today frequently

leverages DNNs optimized using techniques such as those discussed in §2.2.1 [156].

Prior techniques to enhance and optimize WiSARD (§2.1.3) suggest that the

gaps in accuracy and parameter size are not intractable. In particular, Bloom WiS-

ARD [130] was frequently able to compress WiSARD models by three to four orders

of magnitude without substantially harming their accuracy. However, some of these

techniques have incompatibilities that make them challenging to integrate into a single

model. In addition, prior evaluations of WNNs in edge contexts have generally been

limited in scope. Therefore, an approach which combined these enhancements into a

single model, along with an edge hardware platform that could be easily adapted to

different applications, would be helpful to better understand the potential of WNNs.

This chapter describes BTHOWeN (Bleached Thermometer-encoded Hashed-

1Zachary Susskind, Aman Arora, Igor D. S. Miranda, Luis A. Q. Villon, Rafael F. Katopodis,
Leandro S. de Araújo, Diego L. C. Dutra, Priscila M. V. Lima, Felipe M. G. França, Mauricio Bre-
ternitz, and Lizy K. John. Weightless neural networks for efficient edge inference. In Proceedings of
the International Conference on Parallel Architectures and Compilation Techniques, PACT ’22, page
279–290, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450398688.
doi: 10.1145/3559009.3569680. URL https://doi.org/10.1145/3559009.3569680

48

https://doi.org/10.1145/3559009.3569680

input Optimized Weightless Neural Network; pronounced as Beethoven), my ini-

tial exploration into improving WNNs in edge contexts. BTHOWeN consists of two

components: a weightless model which incorporates multiple prior approaches to en-

hancing the WiSARD classifier and introduces further novel improvements, and an

FPGA-based accelerator architecture for fast, energy-efficient inference. Specifically,

with BTHOWeN, I make the following contributions:

1. A new model design for small and accurate WNNs. BTHOWeN incorporates

bleaching [35], thermometer encodings [80], and Bloom filter-based model com-

pression [130]. I demonstrate that a counter-based variant of the Bloom filter

can be used to enable bleaching in compressed models, and furthermore that

the hashing procedure in Bloom filters can be modified to improve hardware

implementation efficiency. I introduce a generalized Gaussian thermometer en-

coding strategy which improves model accuracy independent of the underlying

data distribution.

2. A comparison of this model against Bloom WiSARD, the prior state-of-the-

art for memory-efficient WNNs, across nine multi-class classification datasets.

BTHOWeN is shown to provide a geometric average 62% reduction in test error

and 56% reduction in model parameter size.

3. An FPGA-based inference accelerator architecture for BTHOWeN models. Com-

pared against quantized MLPs of similar accuracy, BTHOWeN achieves a mean

91% reduction in latency and 82% reduction in dynamic energy. Compared

against tiny CNNs with similar accuracy, BTHOWeN’s energy and latency re-

ductions exceed 99%.

4. A toolchain for generating BTHOWeN models, including automated hyperpa-

rameter sweeping and bleaching value selection. A second toolchain for con-

verting trained BTHOWeN models to RTL for the accelerator architecture. The

code for this is publicly available at https://github.com/ZSusskind/BTHOWeN.

49

https://github.com/ZSusskind/BTHOWeN

4.1 The BTHOWeN Model

My objective in designing BTHOWeN was to create a hardware-aware, high-

accuracy, high-throughput WNN architecture. To accomplish this goal, I enhanced

the techniques previously used to improve WiSARD with novel algorithmic and ar-

chitectural improvements.

4.1.1 Efficient, Hardware-Friendly Hashing

Bloom filters require multiple independent hash functions, but do not constrain

what these hash functions must be. Bloom WiSARD [130] used a double-hashing

technique based on the MurmurHash [20] algorithm. Double-hashing only requires

the evaluation of two hash functions, regardless of the number of functions needed

by the Bloom filter. It accomplishes this by generating a set of independent values

from the two hashed results. However, this technique introduces a multiplication and

an addition for each hash function. Multiplication is a relatively costly operation in

FPGAs, especially when many computations must be performed in parallel. There-

fore, BTHOWeN does not use double-hashing, but rather evaluates all hash functions

separately.

The MurmurHash algorithm itself introduces many arithmetic operations (e.g.,

5 multiplications to hash a 32-bit value), which is similarly undesirable. Therefore, I

use hash functions drawn from a strongly universal hash family, which are mutually

independent and therefore minimize collision probabilities. I first considered using

the Multiply-Shift family [49] of hash functions. For an n-bit input size and an m-

bit output size, these implement the function h(x) = (ax + b)≫ (n−m), where a is

an odd n-bit integer, and b is an (n − m)-bit integer. Multiply-shift functions can

be implemented using only a few machine instructions, so they are inexpensive in

software, which is beneficial for fast training. Unfortunately, the overhead from the

single multiplication operation was still excessive in hardware.

Instead, BTHOWeN uses the H3 family of hash functions [34]. As shown in

50

Figure 4.1, functions in H3 require no arithmetic operations, only XOR operations

and multi-bit 2:1 MUXes (optimizable to AND gates). For an n-bit input x and m-bit

output, hash functions in the H3 family take the form:

h(x) = x[0]p0 ⊕ x[1]p1 ⊕ . . .⊕ x[n− 1]pn−1

Here, x[i] is the ith bit of x, and P = {p0 . . . pn−1} consists of n random m-bit

values. The drawback of the H3 family is that its functions require substantially

more storage for parameters when compared to the Multiply-Shift family: nm bits

versus just 2n−m.

p0 0

x[0]

p1 0

x[1]

pn-1 0

x[n-1]

m

m m m

...

Figure 4.1: Hardware implementation of an H3 hash function. These arithmetic-free
functions are fast and energy-efficient, but require a large set of random parameters
(shown here as {p0, . . . , pn−1}).

Since a Bloom WiSARD model is composed of many Bloom filters (one per

RAM node), and Bloom filters themselves require multiple hash functions, the storage

requirements for the H3 hash parameters become problematic if implemented naively.

Additionally, since many parameters need to be accessed simultaneously in order for

hash computations to be performed in parallel, it is difficult to map these parameter

sets to FPGA block RAMs, meaning less area-efficient solutions such as large register

files must be used instead. However, there is no disadvantage to sharing the same

51

set of hash functions between all Bloom filters in a BTHOWeN design. Therefore,

all Bloom filters can retrieve their hash parameters from a single central register file,

with one nm-bit entry for each of the shared hash functions.

This reuse of hash parameters enables an additional optimization. Recall from

§2.1.2 that WiSARD models typically use the same assignment of inputs to tuples for

all discriminators. This means that Bloom-filter-based RAM nodes at the same index

in different discriminators will receive the same inputs, and therefore calculate the

same hashed indices into their internal LUTs. By separating the hashing component

of the Bloom filter from the table lookup component, BTHOWeN calculates hash

values only once for all discriminators, which reduces computations by a factor equal

to the number of classes.

Note that cryptographically-secure hash functions such as SHA and MD5 are

a poor choice for hardware-friendly Bloom filters, as their security features introduce

substantial computational overhead and are unnecessary in this context.

4.1.2 Counting Bloom Filters

Bloom filters are data structures for approximate set membership: given an

input, they indicate whether the input is definitely not an element of the set rep-

resented by the filter or possibly an element of the stored set. On the other hand,

bleaching requires a record of how many times each input pattern was seen dur-

ing training. Therefore, there at first appears to be a fundamental incompatibility

between bleaching and Bloom WiSARD.

To resolve this issue, I introduce the use of counting Bloom filters for training

BTHOWeN. As depicted in Figure 4.2, counting Bloom filters replace the binary

entries of a conventional Bloom filter with a set of multi-bit counters. When training

a BTHOWeN model, each time an input is presented to a filter, counter values are

read from the locations indicated by the hashed results. The counter with the smallest

value (or counters, in the event of a tie) is then incremented. At inference time, the

52

7
13→13
11
4
0
5

2→3
9

h1(x)
h2(x)

11

5

1

0
0

Test
Input

Training
Input

b=6

Figure 4.2: Implementation of a counting Bloom filter used in training BTHOWeN.
During training, when an input is presented to the filter, the smallest of the counter
values accessed by the hash function outputs is incremented. During inference, the
smallest accessed counter value is compared against the bleaching threshold to deter-
mine the filter response.

smallest of the accessed counter values is compared against the bleaching threshold b

to determine the filter response. As with conventional Bloom filters, false negatives

are impossible: if a pattern was seen i times during training, then the smallest of its

associated counter values must be at least i. Therefore, the possible responses of a

counting Bloom filter with threshold b are possibly seen at least b times and definitely

not seen b times.

The construction of the counting Bloom filter in BTHOWeN is different from

the typical form. Classically [82], counting Bloom filters increment all indicated

counter values when an element is added. The advantage of this approach is that it

allows for elements to be removed by decrementing counters, though doing so intro-

duces the possibility of false negatives. However, BTHOWeN does not need the ability

to remove elements from a filter, and incrementing only the smallest counter provides

a tighter upper bound on how many times patterns were seen. The implementation

of counting Bloom filters in BTHOWeN is conceptually similar to count-min sketches

under the conservative update rule [25]. However, count-min sketches use a separate

data array for each hash function, while counting Bloom filters use a unified data

53

array. This results in a tradeoff between false positive rate and memory footprint.

4.1.3 General Nonlinear Thermometer Encoding

Most prior works which used multi-bit unary thermometer encodings for WNNs

used equal increments between thresholds. The thresholds for an input with minimum

value m and maximum value M using a k-bit encoding are given by Equation 4.1:

{
m + i

M −m

k + 1

∣∣∣∣ i ∈ {1 . . . k}} (4.1)

This “linear” approach works well if an input feature is uniformly distributed,

and therefore equal importance should be given to all parts of the input space. How-

ever, it works less well for features which are more likely to assume values closer to

their mean. For instance, Figure 4.3 shows a 7-bit encoding for a feature that follows

a truncated normal distribution. If a linear encoding is used to represent this feature,

then 4/7 bits (57%) are used to encode just 24% of inputs. Recognizing this issue,

one prior work [157] explored using unequal increments between thresholds when fea-

tures followed a known, non-uniform distribution, and found that this significantly

improved accuracy.

In BTHOWeN, I use a nonlinear thermometer encoding that assumes that the

distributions of input features are approximately Gaussian. This approach increases

the resolution of the encoding near the mean value of an input feature, while sacrificing

some fidelity near the extrema. For an input feature with mean µ and standard

deviation σ, the thresholds for a k-bit encoding are derived from the quantile function

of the normal distribution [133], as shown in Equation 4.2.

{√
2σ · erf−1

(
2i

k + 1
− 1

)
+ µ

∣∣∣∣ i ∈ {1 . . . k}} (4.2)

As Figure 4.3 demonstrates, this approach is beneficial when the values of

input features are concentrated at their means, as it avoids dedicating excessive en-

54

Figure 4.3: Comparison of the conventional “linear” thermometer encoding with the
Gaussian strategy used in BTHOWeN. Gaussian encoding avoids assigning dispro-
portionately many encoding bits to represent data outliers when the distribution of
an input is concentrated at its mean.

coding bits to representing outlying values. BTHOWeN uses this strategy for all input

features, without requiring any information about the actual underlying distribution.

4.2 BTHOWeN Software Model

Figure 4.4 summarizes the process of creating a BTHOWeN model. The model

is initialized based on dataset parameters (inputs and classes) and configurable hy-

perparameters (encoding bits per model input and inputs, table entries, and hash

functions per Bloom filter). Tuple mappings and H3 hash function parameters are

selected at random, and all counters are set to 0.

During training, samples are sequentially presented to the discriminators cor-

responding to their output labels. Inputs are encoded, mapped to tuples, and passed

to the counting Bloom filters, which update their entries using the approach described

in §4.1.2. As with WiSARD, this is a single-pass process, since additional training

passes would effectively just multiply counter values by a constant.

After training, the bleaching threshold b is chosen to maximize the model’s

ability to generalize to new data. This is typically evaluated using a small subset of

the dataset which was not used during training. For very small datasets, this process

may be too noisy due to the tiny size of the bleaching/validation set, in which case

55

Model
Hyperparameters

Training
Data

Initialize Model

Train Model

Model with
Empty Filters

Select Bleaching
Threshold

Trained
Model

Binarize ModelBest
Threshold

Validation
Data

Test
Data

Binary Weightless
Model

Evaluate Model

Model Selection

Selected
model(s)

Figure 4.4: A flowchart depicting the process of training BTHOWeN models and
preparing them for inference. After model initialization, BTHOWeN is trained using
a single-pass learning rule. A validation set is used to select a bleaching threshold,
and Bloom filters are binarized based on this threshold. Hyperparameter sweeping
is used to identify models which strike a good balance between parameter size and
accuracy.

the training data is used as well. The selection of b is performed using a binary search

strategy between 1 and the largest value seen in any counter, detailed in Algorithm 1.

Once bleaching has been performed, the model can be binarized by replacing counter

values less than b with 0 and counter values of at least b with 1. This allows the

counting Bloom filters to be replaced with conventional (binary) Bloom filters, which

reduces the memory footprint of the model for inference.

BTHOWeN models have several configurable hyperparameters. Increasing the

size of the Bloom filters’ lookup tables decreases the frequency of false positives, which

can improve accuracy, but increases the model’s parameter size and provides dimin-

ishing returns. Using more inputs per Bloom filter broadens the space of Boolean

functions the filters can learn to approximate, and makes the model size smaller as

fewer Bloom filters are needed in total. However, it also increases the likelihood of

56

false positives, and can lead to overfitting. Using more hash functions per Bloom filter

has complex impacts on false positive rates [63] and therefore accuracy, though I have

empirically found that there is almost never a benefit to using more than four hash

functions for BTHOWeN, particularly since hash computation increases the cost of

inference. Lastly, increasing the number of bits in the thermometer encoding improves

input resolution and therefore accuracy at the cost of model size.

Algorithm 1 BTHOWeN bleaching threshold selection

Input: Trained model M ; bleaching dataset (X, Y)
Output: Bleaching threshold b

1: max val ← maxd∈M.discriminators (maxf∈d.filters (maxc∈f.counters (c.value)))
2: b← ⌊max val/2⌋
3: step ← max (⌊max val/4⌋, 1)
4: known ← Dict({})
5: while True do
6: values ← [b− step, b, b + step]
7: accuracies ← [0, 0, 0]
8: for i ∈ range(3) do
9: if values [i] ≤ 0 then
10: continue ▷ Value out of range.
11: end if
12: if values [i] ∈ known then
13: accuracies [i]← known[values [i]]
14: continue ▷ Use cached result.
15: end if
16: predicted ←M(X, values [i]) ▷ Run inference with trial bleaching value.
17: accuracies [i]← sum(predicted == Y) ▷ Count correct inferences.
18: known[values [i]]← accuracies [i]
19: end for
20: best ← values [argmax(accuracies)]
21: if (best is b) and (step is 1) then
22: return b
23: end if
24: b← best
25: step ← max (⌊step/2⌋, 1)
26: end while

In order to identify Pareto-optimal combinations of model hyperparameters,

57

I developed an automated sweeping methodology for BTHOWeN. The single-pass

learning rule for BTHOWeN makes it efficient to train, generally running in a few

minutes on a single CPU core, which allowed me to explore a large search space.

An example hyperparameter sweep configuration is shown in Table 4.1. All 1,008

combinations of these hyperparameters were used to train separate models.

Hyperparameter Values

Encoding Bits per Input 1, 2, 3, 4, 5, 6, 7, 8

Input Bits per Bloom Filter 28, 49, 56

Entries per Bloom Filter 128, 256, 512, 1024, 2048, 4096, 8192

Hash Functions per Bloom Filter 1, 2, 3, 4, 5, 6

Table 4.1: Example hyperparameter sweep values for BTHOWeN. These specific
values were used for the MNIST dataset. Other datasets had minor variations due to
differences in input dimensionality.

4.3 BTHOWeN Inference Accelerator

Figure 4.5 shows a block diagram for the FPGA-based inference accelerator I

developed for BTHOWeN. To simplify control logic, functional units in the acceler-

ator operate in lockstep to the greatest extent possible. This means that an entire

input sample must be read in before computation can begin. This deserialization

is performed using a double-buffered bus interface (not shown). Bloom filters are

divided into separate “Bloom Hasher” and “Bloom Lookup” blocks, which avoids

the redundant computation of hashes for each discriminator. Each hasher computes

H3 hash functions of mapped model inputs, reading the hash parameters, which are

shared between all Bloom filters, from a single shared register file. Since the off-chip

bus usually has insufficient bandwidth to load a full sample each cycle, hashers are

time-multiplexed to reduce model area. Hashers evaluate a single hash function at a

time for all the Bloom filters in the model, storing partial results in an intermediate

buffer. Once a computation has been finished for all filters, the results are passed

58

Discriminator 0

Discriminator 1

Discriminator 9

Argmax

Hasher 0

Hasher 1

Hasher M-1

Lookup 0

Lookup 1

Lookup N-1

.

.

.

Popcount

addr

XOR

data

Hash
parameters

Lookup
table

Input
mapping Output

category

Discriminator

Bloom Hasher

Inference Accelerator

Bloom Lookup

0

0

0

Figure 4.5: Inference accelerator architecture for BTHOWeN. Bloom filters are di-
vided into dedicated Hasher and Lookup blocks. The Hasher blocks compute the H3
hash function on the input data, reading from a shared set of random hash parame-
ters. The Discriminator block takes hashed data as input, passes it through Lookup
blocks, and performs a popcount on the result, returning a response. The Lookup
block contains a LUT, which is accessed using the addresses produced by the hashers,
and performs an AND reduction on the results of multiple accesses.

to the Bloom lookup blocks, and the hashers move on to evaluating the next hash

function.

The lookup blocks accept the hash results as inputs. They use these results to

index their internal LUT, and either store this value in an internal register or compute

the AND of it with the current value of the register. This ultimately computes a

serial AND reduction across all hash function results. A small internal state machine

ensures that the correct number of hashed inputs are combined and that all lookup

blocks output their final values in lockstep.

The popcount modules counts the number of 1s in the outputs of the lookup

59

blocks within each discriminator, producing the response scores. Lastly, the argmax

module determines the index of the discriminator with the strongest response. These

modules are unchanged from the conventional WiSARD model.

Training with bleaching requires multi-bit counters for each entry in each

Bloom filter, which introduces a large memory overhead. For instance, some models

have optimal bleaching values greater than 400. If the accelerator included saturating

counters large enough to represent this value, it would increase the memory usage of

the design by a factor of 9. There would also be additional hardware complexity in-

troduced by the counter increment mechanisms and comparators. Since BTHOWeN

is intended for inference on edge devices, I determined that the costs of supporting

on-chip training in this accelerator outweighed the advantages.

4.4 Evaluation Methodology

I evaluate BTHOWeN on the same nine multi-class classification datasets that

were used for Bloom WiSARD [130]. Most of these datasets are tabular in nature,

meaning features do not carry positional information. I compare BTHOWeN against

quantized, fully-connected (multilayer perceptron / MLP) DNNs on these datasets.

A neural architecture search was used to identify models that were as small as

possible while still having accuracy comparable to BTHOWeN. The trained models

were then quantized to 8-bit precision, and hardware was generated for them using

the hls4ml tool [50]. The training and data collection for these MLP models was

performed by my co-authors in the main paper [140], particularly A. Arora, L. Villon,

and R. Katopodis.

All MLP models and most BTHOWeN models target the Zybo Z7 development

board,2 which was used for a prior FPGA-based WNN accelerator [53]. For MNIST,

which was the largest evaluated dataset in terms of number of input features, I also

2Part number xc7z020clg400-1

60

created a larger design which targeted a Kintex UltraScale FPGA3 in order to explore

the scalability of BTHOWeN. All models were implemented at a clock frequency of

100 MHz. Most models used a data bus width of 64b; for the BTHOWeN model

on the larger FPGA, I also explored an implementation with a 256b bus due to the

larger number of available I/O pins.

Since MNIST is an image dataset, it can also be approached using convolu-

tional neural networks. CNNs perform very well for large image datasets, but I was

interested in exploring their scalability to tiny devices. However, hls4ml struggled to

scale down to the small Zybo FPGA and produced inefficient designs for the convo-

lutional layers (this issue did not impact the MLPs, which only had fully-connected

layers). To make a more fair comparison with tiny CNNs, I used the latency and re-

source utilization values for optimized implementations reported by Arish et. al. [127].

Xilinx Power Estimator (XPE) [160] was then used to estimate energy for this design.

4.5 Results

4.5.1 Selected BTHOWeN Models

After hyperparameter sweeping, I picked models for each dataset which struck

a good balance between model parameter size and accuracy. Sweeping results showed

clear points of diminishing returns as model sizes grew larger. For most datasets, I

only chose a single model for inference. However, for MNIST, I picked three models

at different design points in order to better illustrate the tradeoff between model size

and accuracy. Hyperparameters for the selected models, along with the iso-accuracy

MLPs used for comparison, are shown in Table 4.2.

3Part number xcku035-ffva1156-1-c

61

Model Bits Bloom Filter Size Test MLP
Name /Input Inputs Entries Hashes (KiB) Acc. Layers

MNIST-S 2 28 1024 2 70.0 0.934 —

MNIST-M 3 28 2048 2 210 0.943 784–16–10

MNIST-L 6 49 8192 4 960 0.952 —

Ecoli 10 10 128 2 0.875 0.875 7–8–8

Iris 3 2 128 1 0.281 0.980 4–4–3

Letter 15 20 2048 4 78.0 0.900 16–40–26

Satimage 8 12 512 4 9.00 0.880 36–16–16–6

Shuttle 9 27 1024 2 2.63 0.999 9–4–7

Vehicle 16 16 256 3 2.25 0.762 18–16–4

Vowel 15 15 256 4 3.44 0.900 10–18–11

Wine 9 13 128 3 0.422 0.983 13–10–3

Table 4.2: Hyperparameters for selected BTHOWeN and MLP models.

4.5.2 Comparison with Iso-Accuracy DNN Models

Table 4.3 shows FPGA implementation results for the selected BTHOWeN

models, iso-accuracy DNNs, tiny CNNs, and a prior WNN FPGA implementation. All

models were implemented on the Zybo Z7 FPGA except for BTHOWeN-L, which was

implemented on the larger Kintex board. “BTHOWEN-L*” additionally increased

the data bus width from the 64b used for all other models to 256b in order to reduce

the data movement bottleneck associated with reading samples from off-chip. The

winning results between BTHOWeN and the MLP models are highlighted for power,

energy, and area on each dataset. In all cases, the difference in accuracy between the

two models is no more than 0.4%.

For the MNIST dataset, the medium BTHOWeN model is only 0.3% less

accurate than the MLP, reduces dynamic energy by 42%, and reduces latency by

almost 96%. The MLP uses fewer LUTs and FFs than the medium BTHOWeN

62

Dataset Model
Cycles
/Infer-
ence

Dyn.
Energy
(nJ/Inf.)

LUTs FFs
BRAMs
(36Kb)

DSPs
Test
Acc.

MNIST

BTHOWeN-S 25 48.75 15,756 3,522 0 0 0.934
BTHOWeN-M 37 142.8 38,912 6,577 0 0 0.943
BTHOWeN-L 74 2,225 151,704 18,796 0 0 0.952
BTHOWeN-L* 19 600.0 158,367 25,905 0 0 0.952
MLP 846 245 2,163 3,007 8 28 0.946
CNN 1 33,615 19,497 5,753 3,115 7 18 0.947
CNN 2 33,555 14,429 3,718 2,208 5 10 0.920
Hashed WNN 28 118.4 9,636 4,568 128.5 5 0.907

BTHOWeN 2 0.24 353 223 0 0 0.875
Ecoli

MLP 14 4.2 1,596 1,615 0 0 0.875

Iris
BTHOWeN 1 0.05 57 90 0 0 0.980
MLP 10 0.8 427 488 0 0 0.980

BTHOWeN 4 24.92 21,603 2,715 0 0 0.900
Letter

MLP 26 39.52 17,305 15,738 0 0 0.904

Satimage
BTHOWeN 5 4.2 3,771 1,131 0 0 0.880
MLP 25 9.75 7,007 7,558 0 0 0.878

BTHOWeN 2 0.36 593 121 0 0 0.999
Shuttle

MLP 14 1.82 693 711 0 0 0.999

Vehicle
BTHOWeN 5 1.9 1,781 597 0 0 0.762
MLP 15 3.6 2,824 3,035 0 0 0.766

BTHOWeN 2 0.8 1,559 756 0 0 0.900
Vowel

MLP 18 12.6 5,743 4,663 0 0 0.903

Wine
BTHOWeN 3 0.36 585 239 0 0 0.983
MLP 14 3.64 1,836 1,832 0 0 0.983

Table 4.3: FPGA implementation results for BTHOWeN and comparison models.
“Hashed WNN” from [53]. Models are grouped by dataset, with the winning metrics
italicized for each dataset (for MNIST, BTHOWeN-M is compared against the MLP
model).

model, but also requires FPGA DSP and BRAM resources. BTHOWeN also compares

favorably against the tiny CNNs. CNN-1 has an accuracy of 94.7%, just slightly better

63

Ecoli Iris Letter MNIST-MLP Satimage Shuttle Vehicle Vowel Wine Geomean
0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
La

te
nc

y/
En

er
gy

Baseline - DNN Models

0.14
0.1

0.15

0.04

0.2
0.14

0.33

0.11

0.21

0.090.06 0.06

0.63
0.58

0.43

0.2

0.53

0.06 0.1
0.18

0.12 0.1

0.44

0.16

0.26

0.15

0.37

0.09

0.19 0.16

Relative Latency
Relative Dynamic Energy
Relative Total Energy

Figure 4.6: Relative latencies and energies of BTHOWeN models versus iso-accuracy
MLPs. All models were implemented on a Zybo Z7 FPGA at 100 MHz, with power
and performance metrics derived from Vivado reports.

than BTHOWeN-M. Despite this, BTHOWeN consumes 0.74% of the energy of the

CNN, while reducing latency from 33.6k cycles to 37.

As Table 4.3 illustrates, BTHOWeN’s hardware implementation consumes

fewer hardware resources (LUTs and FFs) than its MLP counterpart for all datasets

except MNIST and Letter. BTHOWeN’s reduction in dynamic energy ranges from

37% on Letter to 94% on Ecoli, Iris, and Vowel. Figure 4.6 summarizes the per-

formance of BTHOWeN versus the MLP models. It also includes total (static +

dynamic) energy values. BTHOWeN’s advantage in total energy is often even larger

than in dynamic energy because its higher throughput decreases leakage energy per

inference. Overall, BTHOWeN models are significantly faster and more energy effi-

cient than DNNs of comparable accuracy.

4.5.3 Comparison with Bloom WiSARD

Bloom WiSARD [130] is a state-of-the-art memory-efficient WNN model. How-

ever, it does not have an associated hardware implementation. Therefore, in compar-

ing it with BTHOWeN, I focused on model parameter sizes and accuracies. Figure 4.7

displays the results of this comparison. In all cases, BTHOWeN achieves superior ac-

curacy with a smaller parameter size than the prior work. On average, inference

64

Ecoli Iris Letter MNIST Satimage Shuttle Vehicle Vowel Wine Geomean
0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e
Er

ro
r/M

od
el

 S
ize

Baseline - Bloom WiSARD

0.62

0.83

0.66 0.67

0.81

0.01

0.7
0.81

0.23

0.38
0.27

0.4

0.85

0.26

0.71 0.71

0.53 0.53

0.18

0.44

Relative Error
Relative Model Size

Figure 4.7: Relative model accuracies and parameter sizes for BTHOWeN versus
Bloom WiSARD [130]. BTHOWeN outperforms the prior WNN on all nine datasets
in both metrics. For MNIST, the BTHOWeN-M model was used for comparison.

error rate is reduced by 62% and parameter size is decreased by 56%. Although no

hardware implementation of Bloom WiSARD exists, BTHOWeN would presumably

also be more efficient there due to its use of a less expensive hash function.

The Shuttle dataset is a notable outlier in Figure 4.7, as BTHOWeN reduces

error by ∼99% versus Bloom WiSARD. Shuttle is an anomaly-detection dataset in

which 80% of the training data belongs to the “normal” class [111]. Since Bloom

WiSARD does not incorporate bleaching, the discriminator corresponding to this

class likely became saturated during training, causing it to always output a near-

maximal response during inference.

4.5.4 Comparison with Prior FPGA-based WNN

A prior WNN accelerator [53] for MNIST was implemented on the same Zybo

FPGA used for most results in Table 4.3, and at the same frequency of 100 MHz.

This prior work is shown in the row labeled “Hashed WNN”. The latency and energy

consumption for this design lie between the BTHOWeN-S and BTHOWeN-M models,

but its accuracy is far worse than even BTHOWeN-S.

While the exact latency for this design was not published, it suffers from slow

memory access speeds. The accelerator reads in one 28-bit filter input per cycle, and

65

uses a single-bit input encoding, so it takes 28 cycles to read in a 784-bit sample.

Therefore, the 28 cycles given for this design in Table 4.3 is a lower bound. Energy

is also a lower bound based on this cycle count and published power values.

BTHOWeN has significant architectural differences which contribute to its

superior accuracy and efficiency:

1. The prior accelerator used a simple hash-table-based encoding scheme, which

had explicit hardware for collision detection. BTHOWeN uses an approach

based on Bloom filters, which is tolerant of occasional false positives and does

not detect or explicitly mitigate them.

2. The prior accelerator did not support bleaching or thermometer encoding, con-

straining it to single-bit encodings and risking saturation issues. BTHOWeN

uses counting Bloom filters and the multi-bit Gaussian thermometer encoding

to avoid these limitations.

3. The prior accelerator supported on-chip training. While this is potentially useful

for online learning applications, and did not require multi-bit counters in their

design due to its lack of bleaching support, it introduces significant hardware

complexity (evidenced in their use of large numbers of BRAMs), which harms

the efficiency of inference.

4.5.5 Model Sweeping Analysis

Figure 4.8 uses the hyperparameter sweep results for MNIST as an illustra-

tive example of the tradeoffs and points of diminishing return that I observed in

BTHOWeN model creation. The first four plots show results which vary a single

hyperparameter from the selected BTHOWeN configurations in Table 4.2.

From Figure 4.8a, it is clear that using more thermometer encoding bits pro-

vides clear but diminishing improvements. Variants of the large model underperform

the smaller models when restricted to very few encoding bits due to the use of a wider

66

1 2 3 4 5 6 7
Encoding Bits per Input

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Ac

cu
ra

cy
Variants of Small Model
Variants of Medium Model
Variants of Large Model
Best Model With Constraint

(a) Accuracy vs. thermometer bits

28 49 56
Inputs per Filter

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Variants of Small Model
Variants of Medium Model
Variants of Large Model
Best Model With Constraint

(b) Accuracy vs. Bloom filter inputs

128 256 512 1024 2048 4096 8192
Entries per Bloom Filter

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Variants of Small Model
Variants of Medium Model
Variants of Large Model
Best Model With Constraint

(c) Accuracy vs. Bloom filter entries

1 2 3 4 5 6
Hash Functions per Bloom Filter

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Variants of Small Model
Variants of Medium Model
Variants of Large Model
Best Model With Constraint

(d) Accuracy vs. Bloom filter hash fns.

1 2 4 8 16 32 64 128
Hash Functions per Bloom Filter

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

20

40

60

80

100

120

140

Be
st

 B
le

ac
hi

ng
 V

al
ue

Best Bleaching Accuracy
Fixed Bleaching Accuracy
Best Bleaching Value

(e) Accuracy vs. hash functions per filter
with fixed (b=16) and variable bleaching

101 102 103

Model Size (KiB)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

(f) Most accurate models not larger than
given size constraint

Figure 4.8: Sweeping BTHOWeN across 1,008 configurations (Table 4.1) on MNIST.

67

Bloom filter input width (49 versus 28 bits), resulting in too few Bloom filters per

discriminator. In 4.8b, increasing the number of inputs per filter from 28 to 49 hurts

accuracy for the small and medium models, as their Bloom filters do not have enough

entries to handle the larger variety of patterns that are seen. In 4.8c, increasing

the number of entries per filter is seen to uniformly improve accuracy, though again

with diminishing returns. Restricting the entries per filter for the large model below

4096 causes rapid collapse in accuracy, underscoring the importance of having a large

LUT capacity when a filter has many inputs. Lastly, 4.8d shows the consequences of

varying the number of hash functions per Bloom filter. While going from one hash

function to two gives a small but clear improvement, the effects of more than two

hash functions are less clear in most cases.

I expected that using progressively more hash functions per Bloom filter would

eventually harm accuracy, since this is known to increase their false positive rate [63].

However, from Figure 4.8d, this does not appear to be happening. To understand this

effect, I explored variants of the small MNIST model with up to 128 hash functions

per Bloom filter, shown in Figure 4.8e. When the bleaching threshold is fixed at

the optimal value for the original model (b=16), accuracy degrades with more hash

functions per filter, particularly once more than 8 functions are used. However, when b

is allowed to vary according to the binary search strategy in Algorithm 1, the impact

on accuracy is much smaller, and instead b increases. From this, it appears that

bleaching can help to compensate for a poor choice of the number of hash functions

per filter, since it mitigates the high false positive rate that would otherwise occur.

Finally, Figure 4.8f shows the most accurate BTHOWeN model which could

be obtained under a given maximum model size. Exponentially increasing the model

size provides diminishing returns in accuracy. This suggests that further algorithmic

improvements are needed to achieve higher accuracies with reasonable model sizes.

68

4.6 Summary

In this chapter, I presented BTHOWeN, my first weightless model and hard-

ware architecture co-designed for efficient inference. BTHOWeN combines and en-

hances prior WNNs with additional algorithmic improvements, including counting

Bloom filters, optimized hashing, and general Gaussian thermometer encoding. It

outperforms Bloom WiSARD by 62% in inference error and 56% in parameter size,

thereby establishing a new state-of-the-art for WNNs. BTHOWeN’s FPGA accelera-

tor platform enables fast, energy-efficient inference, reducing latency by 91%, dynamic

energy by 82%, and total energy by 84% versus edge-optimized 8-bit quantized MLP

models.

69

Chapter 5: Multi-Pass Learning with Weightless

Ensembles123

Binary neural networks (BNNs) [42, 43, 71, 123] have received considerable

interest as an approach to inference on the extreme edge. In particular, the Xilinx

Brevitas [118] library and accompanying FINN [145] platform provide a toolchain for

the entire process of developing BNNs, from training models to deploying them for

inference on edge FPGAs. While BTHOWeN is considerably more efficient and accu-

rate than prior WNNs and compares favorably against quantized DNNs implemented

using hls4ml, it can fall short of FINN in accuracy, throughput, and efficiency. For

instance, the largest BTHOWeN model for MNIST achieved 95.2% accuracy, required

158k LUTs, and could process one sample every 19 cycles. By contrast, the smallest

published FINN model achieves 95.8% accuracy, requires 91k LUTs, and can process

one sample every 16 cycles. BTHOWeN is unable to match the accuracy of the larger

FINN models.

While BNNs are efficient in hardware, they require activations to be propa-

gated through multiple layers of computation, increasing inference latency. Therefore,

1Zachary Susskind, Aman Arora, Igor D. S. Miranda, Alan T. L. Bacellar, Luis A. Q. Villon,
Rafael F. Katopodis, Leandro S. de Araújo, Diego L. C. Dutra, Priscila M. V. Lima, Felipe M. G.
França, Mauricio Breternitz Jr., and Lizy K. John. ULEEN: A novel architecture for ultra-low-
energy edge neural networks. ACM Trans. Archit. Code Optim., 20(4), dec 2023. ISSN 1544-3566.
doi: 10.1145/3629522. URL https://doi.org/10.1145/3629522

2Zachary Susskind, Alan T.L. Bacellar, Aman Arora, Luis A.Q. Villon, Renan Mendanha, Lean-
dro S. De Araújo, Diego L.C. Dutra, Priscila M.V. Lima, Felipe M.G. França, Igor D.S. Miranda,
Mauricio Breternitz, and Lizy K. John. Pruning weightless neural networks. In ESANN 2022 proceed-
ings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, pages 37–42, 2022. doi: http://dx.doi.org/10.14428/esann/2022.ES2022-55

3(Poster presentation) Zachary Susskind, Aman Arora, Alan T. L. Bacellar, Diego L. C. Dutra,
Igor D. S. Miranda, Mauricio Breternitz, Priscila M. V. Lima, Felipe M. G. França, and Lizy K. John.
An FPGA-based weightless neural network for edge network intrusion detection. In Proceedings of
the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA ’23,
page 232, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450394178.
doi: 10.1145/3543622.3573140. URL https://doi.org/10.1145/3543622.3573140

70

https://doi.org/10.1145/3629522
https://doi.org/10.1145/3543622.3573140

there is still merit to exploring WNNs as an alternative to BNNs for edge inference.

However, additional improvements are clearly needed on top of what I proposed in

BTHOWeN to bridge the gap in model performance. Therefore, I introduce a set of

novel WNN optimizations, including a multi-pass learning rule, additive submodel

ensembles, and RAM node pruning, which expand the viability of WNNs in extreme

edge inference scenarios. Collectively, these contribute to a weightless neural model

and hardware architecture I call ULEEN (Ultra Low Energy Edge Networks). In

particular, I make the following contributions:

1. ULEEN, a novel weightless model that enhances prior WNNs such as BTHOWeN

by introducing a multi-pass gradient-based learning rule, additive submodel en-

sembles, and RAM node pruning. I compare ULEEN to fully-connected binary

neural networks on the four MLPerf Tiny datasets and MNIST. ULEEN re-

duces parameter size by a geometric average of 1.9× compared to comparably

accurate BNNs trained using the Brevitas library, and increases accuracy by an

average of 3.1% over similarly-sized BNNs.

2. A fast, energy-efficient FPGA-based inference accelerator architecture for ULEEN.

I compare this accelerator against the Xilinx FINN [145] platform for optimized

BNN deployment on a Xilinx Zynq Z-7045 FPGA. The FPGA implementation

demonstrates superior performance versus similarly accurate BNNs, including a

6.1× decrease in area-delay product (ADP) with an 8.9× increase in energy ef-

ficiency on the KWS dataset, and a 5.0× decrease in ADP with a 3.8× increase

in efficiency on ToyADMOS/car.

3. A comparison of ULEEN against two prior memory-efficient WNNs, Bloom

WiSARD [130] and BTHOWeN. I show that my optimizations in ULEEN can re-

duce inference error by up to 5.3× and model parameter size by up to 5.5× com-

pared to Bloom WiSARD across the KWS, ToyADMOS, and MNIST datasets.

I also demonstrate that my multi-pass learning and ensemble techniques provide

71

significant accuracy improvements over BTHOWeN, reducing inference error by

an average of 2.3×. Pruning enables a 27% reduction in model size with min-

imal accuracy impact, giving a final result comparable in parameter size to

BTHOWeN but with far superior accuracy.

The code I developed for this work is publicly available at https://github.

com/ZSusskind/ULEEN.

5.1 The ULEEN Model

ULEEN incorporates multiple algorithmic improvements on top of BTHOWeN,

including structural changes and a novel multi-pass WNN training strategy. These

enable it to outperform BTHOWeN in both accuracy and efficiency.

5.1.1 Multi-Pass, Gradient-Based Learning for WNNs

Most WNNs, including BTHOWeN, are trained using single-pass learning

rules. While multi-pass WNN learning rules have been explored in prior work, they

used discrete complicated search-based strategies (as opposed to gradient-based up-

dates) and empirically resulted in models with poor accuracy (see §2.1.4.3). Despite

these shortcomings, I believed this topic was worth revisiting due to the limitations of

single-pass WNN learning rules such as the one used for BTHOWeN. When training

BTHOWeN, patterns are presented only to the discriminator corresponding to the

correct output class, without any mechanism for feedback between discriminators.4

This means that while excitatory behaviors can be learned, inhibitory interactions

between discriminators are not generally possible. However, it is well-understood

that inhibition plays a crucial role in biological learning [72]. Therefore, I developed

4Arguably, bleaching provides a limited degree of feedback since it can account for the case where
a pattern is common in one class and rare (but not nonexistent) in another. However, bleaching is
not able to serve as a feedback mechanism when a pattern is common in multiple classes.

72

https://github.com/ZSusskind/ULEEN
https://github.com/ZSusskind/ULEEN

a gradient-based learning rule for ULEEN which allows training samples to be passed

to all discriminators, and uses backpropagation to update RAM node entries.

5.1.1.1 Continuous Bloom Filters

The key innovation I introduce in ULEEN to enable effective gradient-based

multi-pass learning is the continuous Bloom filter, an example of which is shown in

Figure 5.1. In a continuous Bloom filter, table entries are continuous (floating-point)

values in the range [-1, +1]. During a forward pass of the model, table entries are

accessed using addresses generated by multiple hash functions, as with a conventional

Bloom filter. The accessed table entries are then binarized using the straight-through

estimator (STE) function (see §2.2.2.1). Lastly, the AND of these binarized values is

output as the filter’s response.5

0.3

-0.7

0.0

0.9

-0.6

1.0

0.2

-0.8

-1

x

sign(x)
STE

sign(x)
STE

sign(x)
STE

h2(x)
h1(x)

h3(x)

+1

-1

∂

-1

Figure 5.1: A continuous Bloom filter, a partially differentiable relaxation of the
Bloom filter which is used for training ULEEN. Continuous Bloom filters have
continuous-valued table entries, which are binarized using the straight-through es-
timator function. Entries are updated using a gradient-based multi-pass learning
rule.

5Following the convention used by BNNs, I describe the two logic levels for Boolean values as
{−1, +1} instead of the more familiar {0, 1}. This is done for mathematical convenience during
training and does not have any impact on the final generated logic.

73

During backpropagation, the AND gate at the end of the continuous Bloom

filter receives a gradient value which indicates how its output impacts the loss function

of the model. This gradient is then distributed between the inputs to the AND gate.

If the output of the AND gate was +1 during the forward pass, indicating that all

of its inputs were also +1, then each input receives the gradient divided by the total

number of inputs (equivalently, the number of hash functions). If the output was -1,

then inputs that were -1 receive the gradient divided by the number of inputs equal

to -1, and the inputs equal to +1 receive no gradient. These gradients are then passed

backward through the STE (which behaves as an identity function in the backwards

pass since table entries are clamped to [-1, +1]) and used to update the corresponding

entries in the continuous Bloom filter’s table.

Continuous Bloom filters are complex to implement in hardware due to their

use of floating-point values. However, like the counting Bloom filters in BTHOWeN,

they can be binarized and replaced with conventional Bloom filters before inference.

ULEEN does not use bleaching; instead, table entries that are less than 0 are replaced

with 0 and entries that are at least 0 are replaced with 1.

5.1.2 Additive Submodel Ensembles

Ensembles, like the one shown in Figure 5.2, combine multiple small, weak

classifiers into a single stronger model. Ensembles have been extensively studied

in other areas of machine learning, and are the driving concept behind techniques

such as Bayesian model averaging, boosting, and bagging [48]. ULEEN leverages

ensembles by independently training several WNN submodels on the same training

data. During inference, the response scores for each discriminator are summed across

the submodels before the final argmax prediction. In other words, if a submodel i

produces a response score Rij for class j, then the final prediction of the model will

be argmax∀j (
∑

iRij).

This additive ensemble technique is similar to but distinct from bagging. In

74

Figure 5.2: ULEEN uses “additive ensembles” of weightless submodels, where the
response scores of each discriminator are summed across the submodels before the
output class is predicted. Ensembles are more accurate than any of the individual
submodels which compose them, and an ensemble of small submodels is usually more
efficient than a single large model.

bagging, submodels are trained using random subsets of the training data to influence

them to learn different patterns and behaviors. On the other hand, in ULEEN, all

submodels see the same training data, but the connections from model inputs to RAM

nodes are different. This sparse connectivity forces RAM nodes in different submodels

to learn distinct patterns, even if their hyperparameters are otherwise identical.

One might reasonably expect that using ensembles of submodels would increase

the size of a ULEEN model, since there are more RAM nodes in total. However, I

have found that in practice this is usually not the case. The individual submodels

of an ensemble can be made much smaller (and therefore individually less accurate)

than a monolithic model without significantly degrading ensemble accuracy. Since the

amount of hash computation required for inference increases with the number of sub-

models, I avoid using ensembles with excessively many submodels. ULEEN ensembles

of numerous tiny submodels can give excellent accuracy, but they are impractical to

implement in hardware due to the area overhead of hashing.

The idea of building ensembles out of WNNs has been explored previously [102].

However, the prior work which examined this subject did not see much benefit from

the technique: the ensembles were far larger than the monolithic models, and only

achieved a marginal improvement in accuracy. It appears that multi-pass learning

75

may be a critical factor to making ensembling effective for WNNs.

5.1.3 RAM Node Pruning

ULEEN also introduces a technique for pruning WNNs. In the context of

DNNs, “pruning” most commonly refers to a process of identifying and eliminating

the weights which contribute the least to overall model accuracy. However, there is

no direct analogue to this in WNNs, since even if there were a reliable way to identify

which table entries were unimportant, it is unclear how they could be eliminated

without radically restructuring the table lookup. Therefore, when pruning ULEEN

models, I focus on identifying and eliminating entire RAM nodes that are irrelevant

or harmful to model performance.

After training a ULEEN model, I evaluate how useful each RAM node is as

a predictor of the model output by calculating a “utility score”. In particular, for

each RAM node Nij in discriminator di, the pruning algorithm observes whether Nij

outputs a 1 when the correct class label is i. This is then used to compute true and

false positive and negative rates for the RAM node. For a dataset with M classes,

the utility score for a RAM node is given by (M − 1)(TPR−FNR) + (TNR−FPR).

Next, a fixed fraction of the RAM nodes in each discriminator with the lowest utility

scores are removed from the model.

Eliminating RAM nodes reduces the maximum possible response score of each

discriminator. The impact that this has can vary between discriminators. For in-

stance, a RAM node that always outputs 0 and a RAM node that always outputs 1

are equally useless, but removing them will have different impacts on a discriminator’s

average response score. To compensate for this, I next learn an integer bias for each

discriminator, which is added to its output. Finally, I perform a fine-tuning training

pass to restore some of the accuracy that was lost due to pruning.

76

Non-Uniform Pruning Uniform Pruning

Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3 Node 0 Node 1 Node 2 Node 3

No Pruning

bias bias

Figure 5.3: Two strategies for pruning ULEEN models. Non-uniform pruning elimi-
nates the same number of RAM nodes in each discriminator, but allows those RAM
nodes to be picked at arbitrary indices. Uniform pruning adds the additional constrain
that the pruned RAM nodes be at the same indices in all discriminators. Uniform
pruning can have a larger impact on accuracy, but enables additional optimizations
in hardware.

5.1.3.1 Non-Uniform and Uniform Pruning

As shown in Figure 5.3, I explored two variations of the RAM node pruning

strategy. “Non-uniform” pruning requires the same number of RAM nodes to be

eliminated in each discriminator, but does not otherwise constrain which RAM nodes

are removed. This approach uses per-discriminator metrics to determine which RAM

nodes are least useful. On the other hand, the “uniform” pruning strategy averages

utility scores across the discriminators, meaning RAM nodes are removed at common

indices in all discriminators.

The non-uniform pruning strategy implicitly recognizes that a particular input

tuple may be useful for predicting some classes but not others. By choosing the most

important RAM nodes in each discriminator individually, the impact on accuracy

from pruning can be reduced. However, eliminating RAM nodes at the same index

in all discriminators is more efficient in hardware. This is because ULEEN, like

BTHOWeN, shares the same input-to-tuple mapping for all discriminators, meaning

Bloom filter hash computation only needs to be performed once for all discriminators.

If the RAM node at a given index is eliminated in some discriminators but preserved in

others, then the hash functions for this RAM node must still be computed once for the

remaining discriminators. However, if a RAM node is eliminated in all discriminators,

77

Dataset
Unpruned ≤1% Drop ≤3% Drop

Size
(KiB)

Test
Acc.%

Size
(KiB)

Test
Acc.%

Size
(KiB)

Test
Acc.%

MNIST 373 98.49% 112 97.91% 38.1 95.99%
FashionMNIST 2786 89.20% 1533 88.62% 412 86.61%
Letter 30.9 93.13% 23.6 92.27% 15.8 90.28%
Satimage 5.53 88.30% 3.66 87.30% 1.17 85.35%

Table 5.1: Pruning sensitivity study results for additional models and datasets. Prun-
ing rations were chosen for ≤1% and ≤3% drops in inference accuracy.

which is guaranteed with uniform pruning, then the hash computation can be skipped.

This can potentially save hardware area, even if more RAM nodes must be preserved

overall to maintain model accuracy.

To understand which strategy was superior in practice, I explored pruning

up to 98% of RAM nodes from ULEEN using both the uniform and non-uniform

techniques. A result from this sweep is shown in Figure 5.4. In this example, the two

techniques have almost identical impacts on model accuracy up to a ∼70% pruning

ratio. While non-uniform pruning can eliminate hash computations if a RAM node is

independently pruned in all discriminators, even at a 70% pruning ratio, the reduction

in hash computation from this is only 7.1%, versus 70% for uniform pruning. While

non-uniform pruning is significantly more accurate at very high (≥90%) pruning

ratios, this can be offset by just using a slightly lower ratio with uniform pruning.

Therefore, the uniform strategy is generally the superior approach for pruning ULEEN

models.

Table 5.1 shows sweeping results with uniform pruning for some additional

ULEEN models on other datasets. On average, 40% of RAM nodes can be pruned

with ≤1% loss in accuracy, and 74% can be pruned with ≤ 3% loss in accuracy.

Although this does not approach the degree of weight pruning that is frequently

possible for DNNs, it is still a notable reduction in memory requirements and circuit

area. When used in the context of an ensemble, the bias terms that are introduced

78

0 50 100 150 200 250 300 350
Model Parameter Size (KiB)

2

4

6

8

10

12

14
Te

st
 E

rro
r %

0 500 1000 1500 2000 2500 3000
Hash Computations / Sample

90%
92%

94%

96%

20%30%40%50%60%70%
80%

90%
92%

94%

96%

98%

0%
70%80%

90%92%
94%

96%

98%

Non-Uniform: Model Size vs. Error
Non-Uniform: Hash Computations vs. Error
Uniform: Model Size and Hash Computations vs. Error

Figure 5.4: Pruning sensitivity study for a ULEEN model for the MNIST dataset.
The uniform and non-uniform pruning strategies have almost identical performance
with low-to-moderate pruning ratios, but the uniform strategy is much more effective
at eliminating hash computations.

by pruning can be summed across submodels, meaning the only inference overhead

incurred by pruning is a single bias addition for each output class.

5.2 ULEEN Software Model

Figure 5.5 shows what a ULEEN model looks like during the initial training

phase. Submodels are trained separately, meaning they each perform a separate soft-

max and cross-entropy loss calculation, and do not share gradients. The summation

of discriminator responses across classes is used exclusively for inference and is not

shown in this figure. This figure also does not show RAM node pruning, which is not

performed until after initial training.

79

Submodels

Weightless Model 0

Discriminator 0
Discriminator 1

...
Discriminator M-1

+

Continuous Bloom Filters

...

Cross-Entropy
Loss

Reordering and
thermometer

encoding

Backprop

...

Weightless Model L-1 Cross-Entropy
Loss

Softmax

Softmax

Figure 5.5: An overview of a ULEEN model during training. ULEEN is composed
of an ensemble of submodels, each of which is a itself a WNN. Submodels are com-
posed of discriminators, which use continuous Bloom filters during training to en-
able gradient-based weight updates. Submodels are trained independently, with their
losses computed separately.

Figure 5.6 summarizes the multi-pass training flow for ULEEN. Inputs are

encoded with the same Gaussian thermometer strategy I used in BTHOWeN. The

entries of the continuous Bloom filters are randomly initialized between -1 and 1 and

iteratively updated using backpropagation with the straight-through estimator. Note

that gradients are not backpropagated through the hash functions, and thermometer

encoding thresholds therefore are not updated during training.

To provide regularization and prevent overfitting, I apply dropout with prob-

80

�✁✂✄✂☎✆✂✝✞

✟✠✡✞✆

☛☞☎✂✁ ✟✠✡✞✆

✌☞✞✡✂✍✄

✎✠✏✏

✑✒✓✔✕✖

✗✓✘✙✚ ✛✕✔✜✢ ✌☞✣✁✞

✤✂✆✄✞☞✏

✥✦✒✘✓✜✔

✛✕✔✜✢ ✎✞☎☞✁

✧✂☎✏✞✏

✤✂✁✞★☛✣✁✂✁✩

✌☞✞✡✂✍✄

✎✠✏✏

✧✂✁☎☞✂✝✞

✟✠✡✞✆

✪✘✓✒✦✫

✬✭✭ ✮✯☎✆✣☎✄✞

✟✠✡✞✆

☛☞☎✂✁✂✁✩ ✰☎✄☎

✟✠✡✞✆

✱✠✁✲✂✩

✳☎✆✂✡☎✄✂✠✁ ✰☎✄☎

☛✞✏✄ ✰☎✄☎

Figure 5.6: Training procedure for ULEEN models. After an initial training pro-
cess, the least useful RAM nodes are pruned, followed by additional passes to learn
discriminator biases and fine-tune the pruned model. Lastly, the finished model is
binarized, eliminating floating-point arithmetic and preparing it for inference.

ability p=0.5 to the outputs of the RAM nodes of the larger ULEEN models during

training. Without this regularization, I observed that models would frequently per-

fectly memorize their training data. Dropout randomly cancels some values and

rescales the rest. This results in the possible continuous Bloom filter outputs becom-

ing {-2, 0, +2} during training. This strategy improves generalization and does not

result in any overhead during inference.

I train ULEEN models using the Adam [83] optimizer with a base learning rate

of 10−3. Initial filter entry values are uniformly sampled (i.e., drawn from U(−1, 1)).

I also use a simple form of data augmentation for the MNIST dataset: each image

in the training data is copied 9 times, with copies shifted between -1 and 1 pixels

horizontally and vertically. After training, models are pruned and fine-tuned as de-

scribed previously. Lastly, the continuous Bloom filters are statically binarized by

applying the sign function and then rescaled from {-1, 1} to {0, 1}, which transforms

them into conventional Bloom filters. Discriminator output biases are also adjusted

to account for this transformation.

5.3 ULEEN Inference Accelerator

Figure 5.7 shows the block diagram for my pipelined ULEEN inference acceler-

ator architecture. During the evaluation of BTHOWeN, I noticed that the bandwidth

81

of the off-chip input bus was usually the throughput bottleneck for models. There-

fore, ULEEN introduces an optional compression scheme for input data. This scheme

replaces unary thermometer-encoded values with binary integers representing how

many bits are set. Since thermometer bits are always set from least to most signif-

icant, this process is easily reversed to recover the original encoding. Compression

reduces the amount of data movement for a k-bit thermometer encoding by a factor

of k
⌊log2(k)⌋+1

, but requires hardware support for decompression (shown in the top left

of the figure). The decompression block is composed of functional units which com-

pare inputs against a series of increasing constant values. The hardware for these

functional units is simple, and they can be time-multiplexed like the hash units, so I

always use compression for ULEEN models with three or more thermometer bits per

input.

The discriminators in Figure 5.7 have several refinements over their predeces-

sors in the BTHOWeN accelerator architecture. Most notably, they have been im-

proved to take advantage of the sparsity which is created by pruning. Bloom lookup

units corresponding to RAM nodes which have been pruned can be eliminated entirely.

Additionally, the design automatically detects and eliminates unnecessary hash func-

tion computations. The number of hash functional units to generate is determined by

the dataset sample inputs, thermometer encoding width, compression scheme, hash

functions per Bloom filter, and non-pruned Bloom filters per discriminator, and is

chosen to be as small as possible without bottlenecking the design.

Each submodel in an ensemble must compute its own hashes since input orders,

hash input and output widths, and random hash parameters vary. Since different

submodels have different table contents, sizes, and prunings, they also have their

own sets of filter units. Bloom filter outputs for the discriminators in each submodel

are concatenated and a popcount is performed, which combines the popcount step

of WiSARD with the additive ensemble aggregation. The aggregated pruning bias

values are added to the resultant response scores, and the index of the strongest

response is computed and used as the final prediction.

82

�✁✂✄☎✆✝✞✟

✠✡✡ ☛☞✌✍✎ ✏

✠✡✡ ☛☞✌✍✎ ✑

✠✡✡ ☛☞✌✍✎ ✒

✓☎✔✕☎✁✖✗✟

✘✙✚✛✜✢

✣✤✥✟

✦

✠✡✡ ☛☞✌✍✎ ✧★✑

✩✩✩
☛

☛ ✪✜✎✫✍✬

✭

✭

✭
✮✯✰

✱✲✳✴✵✶✷✲✸✸✹✴✺ ✻✺✹✼✸

✽✾✿✚★✽☞✿✚ ❀✫❁❁✍✙

✮☞✛❂✙✍✬✬✍✌
✾✿❂✫❃✬ ❁✙☞✛
❃❄✍ ❅✫✬
✾✿❃✍✙❁✜❆✍

❇✿❆☞✛❂✙✍✬✬✍✌
✪✜✎✫✍✬

❈✝✕☎✄✔❉✝✟✟✤☎✖ ✣✞☎✕❊

☛ ✪✜✎✫✍✬

☛ ✪✜✎✫✍✬

☛ ✪✜✎✫✍✬

☛ ✪✜✎✫✍✬ ☛ ✪✜✎✫✍✬

❋✿❁✍✙✍✿❆✍
✙✍✬✫✎❃☛ ✜✌✌✍✙✬

Figure 5.7: Inference accelerator architecture for ULEEN. Input is deserialized and,
if needed, decompressed, before being passed to an ensemble of submodels. Each sub-
model contains a hardware block for computing hash functions and a set of hardware
units for performing lookups. These units have been improved from BTHOWeN to
take advantage of pruning sparsity. The outputs of the submodels are summed and
biased to get per-class response scores. The index of the strongest response score is
taken as the predicted class.

5.4 Evaluation Methodology

I compare my accelerator architecture for ULEEN against Xilinx’s FINN [145]

framework for BNN inference on FPGAs. FINN does not itself propose a novel BNN

algorithm, but is instead a tool for generating hardware accelerators for pretrained

BNNs. Therefore, comparing ULEEN against FINN also gives a sense of its per-

formance relative to the broader domain of BNN literature. I use fully-connected,

MLP-style FINN models for this comparison. While FINN supports generating hard-

ware for both fully-connected and convolutional BNNs, I focus solely on the former

83

since ULEEN is not a convolutional architecture.

FINN only provides fully-connected model results for MNIST. They propose

three network topologies, SFC, MFC, and LFC, which each contain three hidden

layers with 256, 512, and 1024 neurons per layer, respectively. They also propose

throughput-optimized “max” and area-optimized “fix” FPGA implementations for

each of these models. I compared against the “max” implementations in this work,

since the ULEEN accelerator is also optimized for high peak throughput. For the

MLPerf Tiny datasets, I trained BNN models for FINN using the Xilinx Brevitas [118]

low-precision machine learning library. I used three hidden layers for these models as

well, with differing numbers of neurons per hidden layer.

5.4.1 Datasets

In addition to MNIST, I use the four datasets in MLPerf Tiny [23] for com-

parisons against FINN in this work. These datasets are:

1. Keyword spotting (KWS): This dataset is extracted from Speech Com-

mands v2 [153], which consists of 105,829 utterances from 2,618 speakers. It

consists of spectrograms representing ten different keywords, plus an “unknown

word” category.

2. ToyADMOS/car: This dataset consists of audio recordings of seven different

toy cars [84]. The objective is to identify “anomalous” samples collected from

deliberately damaged cars.

3. Visual Wake Words (VWW): This dataset consists of 96×96 grayscale im-

ages extracted from the MSCOCO 2014 dataset [98]. The objective is to deter-

mine whether an image contains at least one person.

4. CIFAR-10: An image classification dataset consisting of 32×32 RGB images

in 10 classes [87].

84

5. MNIST: Image classification, with 28×28 grayscale images of the digits 0–

9 [92].

5.4.1.1 A note on positional independence

Not all of these datasets are well-suited to MLPs or ULEEN. In particular,

CIFAR-10 and VWW exhibit high degrees of positional independence, where image

features may be present in different locations and at different scales. However, these

datasets are still interesting to explore with ULEEN because CNNs are difficult to

implement on extreme edge devices. For instance, FINN’s convolutional designs are

orders of magnitude slower and less efficient than their fully-connected models.

5.4.2 Implementation

I implement the software for training ULEEN using custom modules and

LibTorch C++ extensions for the PyTorch machine learning library. This allows

me to leverage GPU acceleration during training. The forward and backward passes

for Bloom filters are implemented as a single multidimensional gather/scatter oper-

ation, which enables efficient memory-parallel computation, but is still bottlenecked

by the GPU’s memory bandwidth.

FINN is designed to leverage Brevitas [118], an open-source library by Xilinx

for creating low-precision and binary neural networks. I used Brevitas to train new

binary MLP models for MNIST and the four datasets in MLPerf Tiny [23]. My co-

author [139] A. Arora then passed these models through the FINN HLS flow to create

optimized FPGA implementations for the BNNs. The FINN compiler applies a series

of transformations to convert the network’s nodes to layers, which invoke functions in

a highly optimized finn-hls library, using time-multiplexing (referred to in the FINN

documentation as “folding”) to reduce execution resources. The resultant C++ code

is then passed through Xilinx Vivado HLS to generate the RTL. We also attempted to

replicate the hardware generation for the SFC, MFC, and LFC models. However, our

85

FINN implementations were significantly less efficient than Xilinx’s published results.

This suggests that these models may have been originally hand-tuned to an extent

that we were not able to replicate. Therefore, I use the original, superior values from

Xilinx for these three models in our comparison with ULEEN.

For the FPGA implementation and comparison, I target the Zynq Z7045 SoC

platform, which was also used to report results for FINN. I also use the same I/O

interface width as FINN (112 bits), and target the same frequency of operation (200

MHz). However, in some cases I was unable to achieve this frequency due to routing

congestion.

5.5 Results

5.5.1 Software Model Comparison of ULEEN with BNNs

Table 5.2 shows the seven ULEEN models I created for comparison with FINN:

three for the MNIST dataset with varying model sizes and accuracies and four for

the MLPerf Tiny datasets. I chose the three MNIST models to specifically compare

against FINN’s SFC, MFC, and LFC models. The other four models were chosen

as configurations with a good balance between accuracy and parameter size. The

table includes two FINN models for each ULEEN model: one intended to match

ULEEN in accuracy (“FINN BNN Iso-Accuracy” in the header), and one to match

ULEEN in parameter size (“FINN BNN Iso-Size”). The iso-accuracy FINN models

for MNIST (SFC, MFC, and LFC) are from the original FINN paper; I created the

other eleven models using the Xilinx Brevitas [118] library. The FINN models I

created all have three hidden layers of equal size, since this was the approach that

was used in the original paper for SFC, MFC, and LFC. FINN was unable to match

ULEEN’s accuracy on VWW and CIFAR-10 even when I made the parameter sizes

of the BNN models more than an order of magnitude larger.

Overall, ULEEN is consistently able to match the accuracies of binary MLPs

that were trained using Brevitas while maintaining a smaller parameter size, or match

86

Dataset
ULEEN FINN Iso-Accuracy FINN Iso-Size

Size
(KiB)

Test
Acc.%

Size
(KiB)

Test
Acc.%

Hidden
Layers

Size
(KiB)

Test
Acc.%

Hidden
Layers

MNIST-S 16.9 96.2 40.8 95.8 256× 3 (SFC) 16.4 95.2 128× 3
MNIST-M 101 97.8 114 97.7 512× 3 (MFC) 103 97.7 480× 3
MNIST-L 262 98.5 355 98.4 1024× 3 (LFC) 283 98.0 896× 3

KWS 101 70.3 324 70.6 1024× 3 101 67.0 524× 3
ToyADMOS 16.6 86.3 36.1 86.1 256× 3 16.4 85.5 144× 3
VWW 251 61.8 3329∗ 57.1∗ 2048× 3∗ 264 55.7 224× 3
CIFAR-10 1379 54.2 19466∗ 45.7∗ 8192× 3∗ 1345 44.4 1700× 3

Table 5.2: Comparison between ULEEN and prior work (FINN) for MNIST and
MLPerf Tiny. ULEEN is smaller than similar-accuracy FINN models, and more
accurate than similar-size FINN models. (*FINN is unable to achieve ULEEN’s
accuracy for VWW or CIFAR-10.)

their parameter sizes while achieving a higher accuracy. In particular, compared

to iso-accuracy FINN models, ULEEN has 1.1× to 3.2× fewer parameters, with a

geometric mean reduction of 1.9×6. Compared to iso-parameter-size FINN models,

ULEEN is 0.1% to 9.8% more accurate, with a mean improvement of 3.1%.

Detailed information on the seven ULEEN models I selected is presented in

Table 5.3. All submodels use two hash functions per Bloom filter; using more than

this typically does not provide any benefit for ULEEN, particularly when considering

the additional hardware area for hashing it entails. I include accuracies for both the

full ULEEN ensembles and all of their component submodels individually. In most

cases, the ensemble is more than 4% more accurate than the best single submodel.

This demonstrates that the additive submodel ensemble technique I developed for

ULEEN is effective across a range of applications.

As anticipated, ULEEN and FINN have poor accuracy on the VWW and

6These figures for parameter size reduction exclude the iso-accuracy FINN models for the VWW
and CIFAR-10 datasets since they could not match the accuracy of ULEEN. If we include these two
models, then the maximum improvement of ULEEN over FINN increases to 14.1× and the geometric
mean to 3.4×.

87

Dataset Model Submodel Bits/Inp Inps/Filter LUT Entries Size (KiB) Test Acc.%

Ensemble 2 — — 16.9 96.20
SM0 ” 12 64 7.19 92.91
SM1 ” 16 64 5.39 90.25

ULN-S

SM2 ” 20 64 4.38 86.16

Ensemble 3 — — 101 97.79
SM0 ” 12 64 10.9 83.54
SM1 ” 16 128 16.0 90.93
SM2 ” 20 256 26.0 92.92
SM3 ” 28 256 18.44 87.05

ULN-M

SM4 ” 36 512 29.38 80.93

Ensemble 7 — — 262 98.46
SM0 ” 12 64 25.0 88.78
SM1 ” 16 128 37.7 93.24
SM2 ” 20 128 30.2 92.44
SM3 ” 24 256 50.3 93.92
SM4 ” 28 256 43.1 90.47

MNIST

ULN-L

SM5 ” 32 512 75.6 90.44

Ensemble 12 — — 101 70.34
SM0 ” 5 8 9.62 56.93
SM1 ” 6 16 16.1 59.32
SM2 ” 7 32 27.5 59.94

KWS

SM3 ” 8 64 48.12 61.01

Ensemble 6 — — 16.6 86.33
SM0 ” 7 64 6.88 83.61
SM1 ” 9 64 5.34 82.32

ToyADMOS

SM2 ” 11 64 4.38 79.85

Ensemble 12 — — 251 61.76
SM0 ” 5 8 30.2 59.07
SM1 ” 7 16 43.2 57.78
SM2 ” 9 32 67.2 59.20

VWW

SM3 ” 11 64 110 58.96

Ensemble 8 — — 1379 54.21
SM0 ” 6 32 112 49.12
SM1 ” 8 64 168 49.53
SM2 ” 12 128 224 46.39
SM3 ” 16 256 336 42.23

CIFAR-10

SM4 ” 20 512 538 38.27

Table 5.3: Details of the selected ULEEN models. SMi refers to the ith individual
submodel comprising an ensemble.

88

CIFAR-10 datasets due to their high degree of positional variance (e.g., a person

could appear in the top left or bottom right of an image). Since ULEEN and the

FINN models I use for comparison do not incorporate convolution, they struggle to

learn position-independent features. Thus, while ULEEN is well-suited for applica-

tions with little positional variance, such as tabular datasets, it is not a universally

applicable machine learning model. Since both ULEEN and FINN perform poorly on

these two datasets, I do not consider them in the FPGA implementation analysis.

5.5.2 FPGA Implementation Comparison of ULEEN with FINN

Detailed comparisons between my FPGA implementations of ULEEN and the

iso-accuracy FINN models are shown in Table 5.4. I report dynamic energy for a

single inference in isolation (batch size b=1) and steady-state inference (b=∞). The

results that were reported by Xilinx for their SFC, MFC, and LFC FINN models [145]

include total power but not dynamic power. Since I did not have access to their RTL to

gather the data for these experiments directly, I extrapolated by assuming a constant

0.3W of static power. This value was derived from the average static power of the

other FINN models, as synthesis results showed very little variation in static power

between designs.7

Overall, ULEEN reduces energy per inference by an average of 8.3× (5.5–

11.7×; geometric mean) for a single inference, and by 7.1× (3.8–9.1×) for steady-

state inference. While ULEEN also has superior latency and throughput to FINN

(by 5.3× and 3.7×, respectively), this is more difficult to compare directly due to

the different areas of the two models. Accounting for this, ULEEN’s area-delay

product is on average 4.5× (1.7–7.8×) lower than FINN’s, with 3.6× (1.7–6.1×)

7I report dynamic rather than total energy because the FINN models for KWS and ToyADMOS
are much more serial than the ULEEN models. This is due to a limitation of the FINN synthesis
tool: “folding” (time-multiplexing) factors must be integer divisors of the layer sizes, restricting the
possible model topologies. The serial nature of these models results in a small circuit area, but
their static energy consumption is high since FPGAs have limited capability to power down unused
regions of the chip. Therefore, using dynamic energy is more fair and favorable to FINN.

89

Small Med.
MNIST

Large KWS ToyADMOS

106

107

In
fe

re
nc

es
/J

ULEEN
FINN Iso-Accuracy
FINN Iso-Size

Figure 5.8: Energy efficiency (steady-
state inferences per Joule) comparison be-
tween FINN and ULEEN.

Small Med.
MNIST

Large KWS ToyADMOS

102

103

In
fe

re
nc

es
/s

ec
/LU

T

*

ULEEN
FINN Iso-Accuracy
FINN Iso-Size

Figure 5.9: Area efficiency (inferences
per second per LUT) comparison between
FINN and ULEEN (∗LUT usage is not
provided for the medium MNIST iso-
accuracy FINN model in [145]).

higher throughput per unit area.8 Therefore, ULEEN is substantially superior to the

iso-accuracy FINN models in energy efficiency, latency, and throughput, even after

adjusting for differences in model areas.

Figures 5.8 and 5.9 compare ULEEN’s energy efficiency and throughput per

unit area against the iso-accuracy and iso-size FINN models. ULEEN’s advantage

over the iso-size models is smaller than with the iso-accuracy models, but it still

outperforms even these less accurate BNNs. ULEEN’s steady-state energy efficiency

is on average 3.8× (2.2–6.2×; geometric mean) better than the iso-size FINN models,

and its throughput per unit area is 2.7× (1.4–4.8×) higher.

To summarize, ULEEN is faster and more efficient than even less accurate

MLP-style BNNs in an optimized FPGA implementation. While it is not suitable for

all workloads (particularly large image datasets), it is a strong option for applications

which place less importance on positional invariance, such as tabular datasets.

8I use LUT utilization as a proxy for total circuit area. Calculating area in this way is to
FINN’s advantage since it also uses BRAMs while ULEEN does not, but Xilinx does not publish
the information necessary to estimate the LUT-equivalent area of a BRAM (see also §3.3). Using
unnormalized throughputs, ULEEN is 1.2–15.0× faster, with a geometric mean of 3.7×.

90

Model
Latency
(µs)

Xput
(kIPS)

Dynamic µJ/Inf.
LUT BRAM

Test
Acc.%b=1 b=∞

ULN-S 0.21 14,286 0.191 0.062 17,319 0 96.2
FINN-SFC 0.31 12,361 2.170 0.566 91,131 4.5 95.8

ULN-M 0.29 14,286 0.823 0.199 49,445 0 97.8
FINN-MFC — 6,238 — 1.763 — — 97.7

ULN-L 0.94 4,048 3.137 0.823 123,102 0 98.5
FINN-LFC 2.44 1,561 20.74 5.445 82,988 396 98.4

ULN-KWS 0.39 10,000 2.536 0.642 141,074 0 70.3
FINN-KWS 7.78 668 29.72 5.716 42,847 151.5 70.6

ULN-ToyADMOS 0.34 11,111 0.549 0.143 29,404 0 86.3
FINN-ToyADMOS 3.52 1,568 3.022 0.547 14,100 34.5 86.1

Table 5.4: Comparison of ULEEN against iso-accuracy FINN models for MNIST,
KWS, and ToyADMOS. Note that some results are not available for the FINN MFC
model, as they were not provided in the paper the data was drawn from [145].

5.5.3 Sensitivity Analysis

Figure 5.10 shows the impacts of the optimizations introduced in BTHOWeN

and ULEEN on the accuracies and parameter sizes of WNN models. Results are

shown for three datasets: MNIST, KWS, and ToyADMOS. The seven results shown

in each graph are for, from left to right, (1) Bloom WiSARD [130], the prior WNN

state-of-the-art, (2) a variant of Bloom WiSARD that uses counting Bloom filters for

bleaching, (3) a further variant that also incorporates a simple “linear” thermometer

encoding, (4) BTHOWeN [140], which uses a Gaussian thermometer encoding, (5) a

variant of BTHOWeN which uses my multi-pass learning rule with continuous Bloom

filters, (6) an ensemble of such models, and (7) the final, pruned ULEEN [139] models.

ULEEN is significantly more accurate than my prior work, BTHOWeN, which

in turn is both more accurate and smaller than the earlier Bloom WiSARD model.

The BTHOWeN models shown in Figure 5.10 have on average 4.2× fewer parameters

than the corresponding Bloom WiSARD models and reduce average test error by an

average factor of 1.5×. The ULEEN models have approximately the same parameter

91

Bloom WiSARD - 2019

Counting Bloom Filters

+ Linear Thermometer

BTHOWeN - 2022

+ Multi-Pass Learning

+ Ensemble

+ Pruning

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%
Te

st
 E

rro
r %

0

200

400

600

800

M
od

el
 S

ize
 (K

iB
)

MNIST
Test Error
Model Size

Bloom WiSARD - 2019

Counting Bloom Filters

+ Linear Thermometer

BTHOWeN - 2022

+ Multi-Pass Learning

+ Ensemble

+ Pruning

0%

10%

20%

30%

40%

50%

60%

70%

Te
st

 E
rro

r %

0

100

200

300

400

M
od

el
 S

ize
 (K

iB
)

KWS
Test Error
Model Size

Bloom WiSARD - 2019

Counting Bloom Filters

+ Linear Thermometer

BTHOWeN - 2022

+ Multi-Pass Learning

+ Ensemble

+ Pruning

0%

10%

20%

30%

40%

50%

Te
st

 E
rro

r %

0

20

40

60

80

100

M
od

el
 S

ize
 (K

iB
)

ToyADMOS/car
Test Error
Model Size

Figure 5.10: Accuracy and model size of WNNs as progressive model improvements
are applied. Results are included for the MNIST, KWS, and ToyADMOS datasets.
All entries except the first (“Bloom WiSARD”) represent improvements which I have
contributed in this dissertation.

sizes as the BTHOWeN models (a deliberate choice I made when selecting models for

comparison) but reduce test error by an additional factor of 2.3×. Overall, ULEEN

models are 3.1–5.5× smaller than Bloom WiSARD, with 2.3–5.3× lower error.

Comparing BTHOWeN to Bloom WiSARD, it is evident that the ability to

reject rare input patterns (using counting Bloom filters in BTHOWeN, and continuous

Bloom filters in ULEEN) is critical for model accuracy and efficiency. This change

alone reduces test error by 1.3× and model size by 4.9× compared to the Bloom

WiSARD baseline. Using a linear or Gaussian thermometer encoding provides some

additional reduction in model error, with the Gaussian encoding providing a greater

reduction than the linear approach. However, thermometer encoding also increases

the model size. To counter this, I decrease the size of the Bloom filters, which negates

some of this improvement in accuracy.

About 55% of the improvement from BTHOWeN to ULEEN is attributable

to the multi-pass learning rule, with the remainder coming from the addition of

submodel ensembles. Pruning reduces model sizes by an average of 27% with at most

a 0.6% increase in test error. In fact, for KWS, accuracy actually improved due to the

92

100ns 200ns 300ns

290ns 70ns

Deserialization

Decompression
Hash

Computation
Lookups

Popcount

Argmax

Input Buffer
Output Buffer

Figure 5.11: Breakdown of the time spent in each stage for inference with ULEEN,
showing two inputs being processed in a pipelined fashion.

elimination of noise from low-utility RAM nodes. These results, combined with the

low inference overhead of the optimizations I propose, demonstrate the superiority of

ULEEN over prior WNNs for edge inference.

Figure 5.11 shows the occupancy of the ULEEN accelerator’s pipeline stages

during inference, using the ULN-M model as an illustrative example. The pipelined

design of the accelerator enables substantial overlapping of computation, with 290ns of

latency but one sample finished every 70ns in the steady state. The hash computation

stage is itself internally pipelined, as its functional units have a two-cycle latency.

The latencies of the decompression and hash computation stages can be tuned by

instantiating different numbers of functional units. While by default the accelerator

only has enough functional units for these two stages to match the throughput of the

deserialization stage, increasing their counts could decrease the latency of ULN-M to

a theoretical minimum of 170ns (a 41% reduction). However, this would not provide

any benefit to throughput.

93

5.6 Comparing ULEEN with Xilinx LogicNets9

LogicNets [146] is another project for efficient FPGA inference by the same

team at Xilinx that developed FINN. LogicNets is interesting because, like ULEEN, it

uses lookup tables to perform computation during inference. However, unlike ULEEN,

LogicNets is trained as a sparsely-connected mixed-precision DNN, which is then

converted into a LUT-based model (see §2.2.3.1). I created ULEEN models and

accelerators for the two datasets used in this paper: UNSW-NB15, a network intrusion

detection (NID) dataset for identifying malicious internet traffic, and JSC, a particle

physics dataset based on classifying observations from the Large Hadron Collider.

UNSW-NB15 is a particularly important dataset since NID is a major issue

on edge and IoT devices. For instance, in 2016, the Mirai botnet used hundreds of

thousands of compromised IoT devices to launch distributed denial-of-service attacks

of sufficient magnitude to overload internet infrastructure [85]. Descendants of Mirai

continue to pose a threat. While UNSW-NB15 is targeted at general NID rather than

edge devices specifically, there is a more recent dataset for IoT devices by the same

research group, BoT-IoT. Therefore, I gathered results for both datasets.

UNSW-NB15 is an imbalanced dataset, with approximately 22 “normal” sam-

ples for every “attack” sample. I performed random oversampling on the training

data to rebalance it to 1:1, and rebalanced the test data to 2:1, which was the ra-

tio used for LogicNets. BoT-IoT is imbalanced to a far larger degree, containing

73,370,344 “attack” samples and 9,531 “normal” samples. I used ADASYN [68] to

generate synthetic training data for this dataset, and rebalanced the test data to 1:1

using random oversampling (meaning there was no synthetic data in the test set).

9(Co-first author) Shashank Nag, Zachary Susskind, Aman Arora, Alan T. L. Bacellar, Diego
L. C. Dutra, Igor D. S. Miranda, Krishnan Kailas, Eugene B. John, Mauricio Breternitz Jr., Priscila
M. V. Lima, Felipe M. G. França, and Lizy K. John. LogicNets vs. ULEEN: Comparing two novel
high throughput edge ML inference techniques on FPGA. In Proceedings of the Midwest Symposium
on Circuits and Systems, MWSCAS ’24, page to appear. Institute of Electrical and Electronics
Engineers, 2024

94

I used the augmented BoT-IoT data to train models for LogicNets (using the same

topology they employed for UNSW-NB15) and ULEEN.

Table 5.5 shows the ULEEN models I selected for this comparison. Unlike

the models in Table 5.3, these use only one hash function per Bloom filter. This

is because LogicNets performs their evaluation assuming their accelerator is part of

a larger FPGA-based design, and uses an arbitrarily high input bus width in order

to maximize throughput. Since the ULEEN accelerator can perform at most one

full hash function per cycle, using two per Bloom filter would halve its potential

throughput. This was not a concern for the previous designs because they were

bottlenecked by the width of the off-chip data bus.

Dataset Submodel
Bits/
Input

Inputs/
Filter

Entries/
Filter

Size
(KiB)

Test
Acc.%

LogicNets
Acc.%

UNSW-NB15 Monolithic 4 10 64 0.19 98.92 91.3

BoT-IoT Monolithic 8 12 128 0.53 99.38 88.6

JSC

Ensemble 32 — — 19.2 71.25 71.8
SM0 ” 8 128 1.25 64.97
SM1 ” 10 256 2.03 65.06
SM2 ” 12 512 3.44 63.49
SM3 ” 14 512 3.12 63.82
SM4 ” 16 1024 5.00 63.20
SM5 ” 20 1024 4.38 63.19

Table 5.5: Selected ULEEN models for LogicNets comparison.

ULEEN is much more accurate on the UNSW-NB15 and BoT-IoT datasets,

but is somewhat less accurate for JSC. Figure 5.12 compares the parameter sizes

of the ULEEN models with LogicNets. Before post-training LUT conversion of the

LogicNets models, ULEEN again wins on UNSW-NB15 and BoT-IoT, while the JSC

ULEEN model is somewhat larger than LogicNets. After LUT conversion, the param-

eter footprints of the LogicNets models increase by orders of magnitude, and ULEEN

is far superior on all datasets.

95

Figure 5.12: Comparison of model
parameter sizes between LogicNets
and ULEEN. LogicNets results are
shown before and after converting
neurons into LUTs.

Figure 5.13: Receiver operating characteris-
tic (ROC) curves for LogicNets and ULEEN.
ULEEN has considerably higher area under
the ROC, indicating superior performance.

Figure 5.13 shows the receiver operating characteristic (ROC) curves for ULEEN

and LogicNets on the UNSW-NB15 and BoT-IoT datasets. ROC curves are a useful

figure of merit for binary classifiers, since they evaluate performance at all possible

classification thresholds. The area under the curve is significantly larger for ULEEN

on both datasets, indicating superior classification performance. (Data for LogicNets

in this figure was collected by S. Nag.)

Table 5.6 shows FPGA implementation results for ULEEN compared against

those for LogicNets. LogicNets targets a high-end Xilinx Virtex UltraScale+ FPGA10

for their designs, runs synthesis in out-of-context mode, and uses as high of a clock

speed as possible. I use the same approach for ULEEN. Clock frequencies are equal

to throughputs for all designs since they have an initiation interval of one sample

per cycle, enabled by very wide input buses (for this reason, the ULEEN models also

do not use input compression). While I lack LogicNets synthesis results for BoT-

IoT, they would likely be close to those for UNSW-NB15 since the model topology

10Part number xcvu9p-flgb2104-2-i

96

Dataset Model
Clock
(MHz)

Xput
(kIPS)

Dyn.Energy
(pJ/Inference)

LUTs FFs

UNSW-NB15
LogicNets 471 471,000 654 15,949 1,274
ULEEN 740 740,000 73 269 538

JSC
LogicNets 427 427,000 6,222 37,931 810
ULEEN 773 773,000 1,222 4,774 5,541

BoT-IoT ULEEN 920 920,000 156 530 1,079

Table 5.6: FPGA implementation results for ULEEN and LogicNets.

was unchanged. Areas for LogicNets are much smaller than would be expected from

the naive parameter sizes due to synthesis-time optimizations. ULEEN is superior in

throughput, energy efficiency, and LUT usage on both UNSW-NB15 and JSC, though

the JSC ULEEN model uses more LUTs than its LogicNets counterpart.

My co-first-author, S. Nag, performed analyses with additional datasets, mod-

els, and hardware implementations for both ULEEN and LogicNets. For more dis-

cussion, refer to the published paper [109].

5.7 Summary

This chapter discussed the ULEEN weightless model, which made significant

improvements on BTHOWeN in both accuracy and efficiency. ULEEN introduces

multi-pass learning using continuous Bloom filters, efficient WNN ensembles, and a

RAM node pruning strategy. Compared to iso-accuracy BNNs built on the Xilinx

FINN platform, ULEEN achieves a 3.8–9.1× reduction in steady-state energy per

inference and a 1.7–7.8× reduction in area-delay product across the MNIST, KWS,

and ToyADMOS/car datasets. Overall, ULEEN compares favorably against BNNs

and LogicNets, another LUT-based approach to inference on FPGAs, demonstrating

its suitability for high-throughput, low-latency edge inference.

97

Chapter 6: Multilayer Weightless Neural

Networks1

While ULEEN has excellent latency, throughput, and energy efficiency com-

pared to several leading approaches to edge inference, it is frequently larger in circuit

area. This is an obstacle to deploying it on ultra-low-end FPGAs or in low-cost,

tiny ASICs. Multilayer WNNs have been previously explored as a strategy to reduce

model sizes (§2.1.4.1). By breaking a single large RAM node into a tree or “pyramid”

of many small LUTs, memory requirements can be greatly reduced. The advantage

of this approach over ULEEN is that it does not require any hashing. However, prior

work was unable to find effective strategies for training these models.

While the multi-pass learning rule used for ULEEN calculates gradients with

respect to RAM node entries, extending it for a multilayer model requires the ability

to define gradients with respect to RAM node inputs. Determining a way to do this

that was both effective and computationally efficient proved to be a major challenge.

This project culminated in the development of the Differentiable Weightless Neural

Network (DWN), which far exceeds the efficiency of ULEEN models in parameter

size, inference energy, and circuit area.

This chapter begins by discussing the motivations that lead me to pursue the

development of multilayer architectures, and some of my initial approaches to this

problem. It then provides an overview of the DWN model, including some optimiza-

tions I introduced to make it more accurate and more efficient. Next, it explains the

approaches I used to deploy DWNs on FPGAs and on the Elegoo Nano (a low-end

microcontroller), and the evaluation results for these devices. My co-first-author [22],

1(Co-first author) Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eugene
John, Lizy Kurian John, Priscila Machado Vieira Lima, and Felipe M.G. França. Differentiable
weightless neural networks. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=GBxflz0qdX

98

https://openreview.net/forum?id=GBxflz0qdX

A. Bacellar, made substantial contributions which assisted in the rapid training of

accurate DWNs, including the Hamming EFD method (§6.2.4) and learnable map-

ping (§6.3.3), and performed additional comparisons of DWNs with Tiny Classifier

circuits [73] and leading models for tabular data. I provide brief background on his

contributions in this work but defer detailed discussion to the ICML paper.

The code for this project is released at https://github.com/alanbacellar/

DWN.

6.1 Motivation

There are several contributing factors which made multilayer WNN models

seem worth revisiting. Replacing Bloom filters with a hierarchy of RAM nodes elim-

inates the need to evaluate hash functions, and makes false positives impossible.

Additionally, rather than having a separate discriminator for each class, RAM nodes

in the intermediate layers of a model can be shared, reducing its parameter size.

6.1.1 False Positive Rates for Bloom Filters

Bloom Filters enable the compression of WNN models such as ULEEN while

maintaining the ability of RAM nodes to learn Boolean functions with arbitrary

minterms. However, they are prone to producing false positives, with the frequency

of this increasing sharply as more items are stored. Figure 6.1 shows the maximum

number of items that can be stored in a Bloom filter before the false positive rate

(FPR) rises above 10% [63]. For a WNN, this is equivalent to the maximum number

of minterms in the Boolean function represented by the filter. This cap increases

linearly with the size of the filter, but remains relatively low. For instance, a Bloom

filter with two hash functions and 2048 entries can hold just 389 items. Using four

hash functions provides a small (∼8.5%) increase in effective capacity but introduces

additional implementation complexity.

This limited capacity is a potential impediment to generalization. Prior work

99

https://github.com/alanbacellar/DWN
https://github.com/alanbacellar/DWN

16 32 64 128 256 512 1024 2048 4096 8192
Bloom Filter Table Entries

10

100

1000

M
ax

 S
et

 S
ize

 w
ith

 <
10

%
 F

PR

2 Hash Functions
4 Hash Functions

Figure 6.1: The number of items that can be stored in a Bloom filter with given table
and hash function set sizes without exceeding a 10% false positive rate. Capacity
increases with table size and to some extent with the number of hash functions, but
is limited even for large Bloom filters

has demonstrated that to maximize accuracy, similar input patterns should often

produce identical outputs [11]. In other words, if a specific input to a RAM node

results in an output of ‘1’, other inputs which are nearby (in terms of Hamming

distance) should likely also produce ‘1’. Consider a Bloom filter with 36 inputs, 2048

entries, and two hash functions. If patterns stored in the filter form hyperspheres with

radius 1, each consisting of a single centroid pattern and its 36 Hamming-adjacent

neighbors, then the effective capacity of the filter is reduced by a factor of 37, meaning

just 10 such hyperspheres can be represented within the given false positive bound.

6.1.2 Elimination of Hash Computation

Hash computation introduces a very large amount of area overhead for ULEEN

models. For instance, hierarchical Vivado utilization reports indicate that 31,278 of

the 49,445 LUTs in the ULN-M model (63%) are consumed by the hash functional

units. By contrast, an unoptimized implementation of the tables within the Bloom fil-

100

ters would only require 12,880 LUTs.2 While it is possible that the reported hardware

area for hashing is somewhat inflated by cross-hierarchy optimizations, this example

demonstrates that hashing can be a bottleneck for creating more area-efficient WNNs.

6.1.3 LUT Sharing

Like WiSARD, ULEEN uses separate discriminators, composed of indepen-

dent sets of RAM nodes, for each output class. This means that if a specific input

pattern is relevant for multiple classes, it must be learned in multiple places. As

shown in Figure 6.2a, previous multilayer weightless models were based on RAM

node pyramids. In these models, not only does each discriminator have a separate

set of pyramids, but each pyramid also has separate sets of RAM nodes. Therefore,

these pyramids operate completely independently until the popcount at the end of

the discriminator. This organization can result in a great deal of redundancy in the

data that is stored in separate pyramids, but was required for the learning rules that

were used for these models.

DWN models are trained using a gradient-based learning rule that does not

require this restrictive organization. Therefore, instead of pyramids, DWNs use mul-

tiple layers of sparsely but arbitrarily interconnected LUTs, shown in Figure 6.2b.

With this approach, most layers of the model consist of randomly-connected sets of

lookup tables arranged in a feedforward topology. The last layer of the model is

usually still broken into separate discriminators so that popcounts can be used to

compute per-class response scores.

2This estimate comes from dividing the parameter size (in bits) of the model by 64, the number
of entries in a FPGA LUT-6. Some additional logic is needed to combine partial results for filters
with more than 64 entries, but this can be accomplished using 2:1 MUXes.

101

LUT LUT

Σ

Σ

Σ

Σ

(a) (b)

Figure 6.2: (a) Prior multilayer WNNs built discriminators out of pyramids of lookup
tables. This can potentially result in redundancy, where the same behaviors are
learned in multiple places in the model. (b) By contrast, DWNs share LUTs between
classes in all but the final layer. This approach reduces model parameter sizes, but
requires a more advanced learning rule.

6.2 Learning Rules for Multilayer WNNs

Identifying a gradient-based learning rule for multilayer WNNs proved to be

nontrivial, and involved the exploration of many different approaches. The perfor-

mance of some of the approaches that were explored is shown in Table 6.1. My initial

approaches used a multilinear polynomial “Finite Difference” method that was effi-

cient to compute but struggled to match the accuracy of ULEEN. Subsequently, I

tried approaches that used relaxed approximations of LUTs during training, includ-

ing sparsely-connected dense subnetworks and an adaptation of the alpha-blending

BNN learning rule. These improved accuracy, but were slow and memory-intensive

for larger models. Ultimately, the Extended Finite Difference (EFD) learning rule,

which is both fast and efficient, and the Polynomial EFD variant, which has more

stable gradient behavior for deeper models, were used to create DWNs.

102

Learning Rule
Test

Acc.%
Parameter
Size (KiB)

Train Time/
Epoch (s)

ULEEN (Baseline) 97.79% 100.6 89.7
Finite Difference 96.59% 53.1 2.9
FD + Gradient Spreading 96.99% 53.1 3.0
Subnetwork Equivalents 97.25% 220.5 32.9
Alpha-Blending 98.35% 23.4 26.3
EFD 98.04% 23.4 5.0
Polynomial EFD 98.31% 23.4 5.0

Table 6.1: Performance of different training strategies for multilayer WNNs on the
MNIST dataset. The “EFD” and “Polynomial EFD” rules strike the best balance
between speed, memory efficiency, and accuracy, and were therefore chosen for DWNs.
All models were trained using an NVIDIA A100 GPU.

6.2.1 Finite Difference Learning Rule

Any Boolean function can be expressed as a multilinear polynomial [116],

which is a useful relaxation for defining gradients. To begin, for a binary vector

x ∈ {−1, 1}n, we can write the Kronecker delta function δax (i.e., the function that

returns 1 if a=x and 0 otherwise) as:

δax =
n∏

i=1

1 + aixi

2
(6.1)

Each LUT in a DWN model represents a function f : {−1, 1}n −→ {−1, 1}.

As with ULEEN, during training, table entries are treated as floating-point values

between -1 and 1 and binarized using the straight-through estimator. This means

that for a LUT T , f(x) = STE(T [x]). We can therefore expand f as:

f(x) =
∑

a∈{−1, 1}n
f(a)δax = STE

 ∑
a∈{−1, 1}n

T [a]δax

 (6.2)

The formulation in Equation 6.2 allows gradients to be defined with respect

to both T and x. The gradient with respect to an entry T [a] is simply equal to the

103

delta function:
∂f

∂T [a]
= STE′(T [x]) δax = δax (6.3)

Finding the gradient with respect to xj, the jth element of x, is trickier. By

moving the gradient inside the summation and breaking out the
1+ajxj

2
term from the

product, it can be simplified to a function of x[j→+1] and x[j→−1], the value of x when

j is forced to 1 or −1, respectively:

∂f

∂xj

=
∑

a∈{−1, 1}n
T [a]

∂

∂xj

n∏
i=1

1 + aixi

2

=
∑

a∈{−1, 1}n
T [a]

aj
2

j−1∏
i=1

1 + aixi

2

n∏
i=j+1

1 + aixi

2

=
1

2

(
T [x[j→+1]]− T [x[j→−1]]

)
(6.4)

I refer to this as the Finite Difference learning rule because of the strong

similarity of the gradient with respect to xj to the finite difference methods used to

approximately solve differential equations [119]. Note, however, that Equation 6.4

gives an exact gradient for this construction of f .

6.2.1.1 Gradient Spreading

To improve the generalization of the models trained with the finite difference

learning rule, I explored using a gradient spreading technique which distributes a frac-

tion of the gradients of each table entry to other entries at close Hamming distances.

Given gradient “smearing matrix” S with Sij = e−dH(i, j) (where dH is the Hamming

distance metric), the adjusted table gradient ∂f
∂TS

is given by:

∂f

∂TS

= S
∂f

∂T
=

1 e−1 e−1 e−2 · · · e−n

e−1 1 e−2 e−1 · · · e1−n

...
...

...
...

. . .
...

e−n e1−n e1−n e2−n · · · 1

δ{−1,−1,...,−1}x
δ{+1,−1,...,−1}x

...
δ{+1,+1,...,+1}x

 (6.5)

104

6.2.2 LUTs as Subnetwork Equivalents

LogicNets [146] proposed the idea of using lookup tables to replace neurons

in a sparsely-connected DNN: by training a model with low-precision activations but

full-precision weights, then explicitly enumerating the output of each neuron for each

combination of its input bits, the trained model could be effectively tabularized.

However, by only replacing individual neurons, LogicNets foregoes one of the key

strengths of lookup tables: their ability to represent complex nonlinear behaviors.

Therefore, I explored using LUTs to instead replace small trained subnetworks.

As shown in Figure 6.3, at training time, this strategy uses a model composed

of many fully-connected DNNs, each with n binary inputs, one binary output, and

a configurable number of internal layers which use full-precision weights and activa-

tions. These DNNs are then connected to form layers. After training, DNNs can

be converted directly into LUTs by enumerating their responses to all possible in-

puts. In general, this approach is somewhat more accurate than the finite difference

learning rule, but it is far slower and has a very large GPU memory footprint during

training due to the need to track gradient information for each of the subnetworks. A

related method for training sparsely-connected DNNs was independently discovered

by NeuraLUT [18].

6.2.3 Alpha-Blending

Alpha-blending [100] (§2.2.2.3) is a methodology for training BNNs which does

not use the straight-through estimator, instead performing an affine combination of

quantized and unquantized weights using a non-learned parameter α. I extended this

methodology to learn the LUT values in WNNs.

When training with the alpha-blending strategy and α<1, the LUTs in the

first layer of the model can output any value in the range [−1, 1]. Therefore, the

inputs to subsequent layers are not binary, and Equation 6.1 no longer behaves as

a Kronecker delta function. However, as Equation 6.6 shows, the outputs of the

105

STE

xyz

x

y

z

000
001
010
011
100
101
110
111

w

f(000)
f(001)
f(010)
f(011)
f(100)
f(101)
f(110)
f(111)

Σ

Σ

Figure 6.3: During training, LUTs can be represented as DNNs with dense, full-
precision internal connectivity but sparse, binary external connectivity. This allows
for straightforward training using backpropagation, followed by post-training tabu-
larization.

functional units in these layers are still bounded between -1 and 1. Hence, these units

can be viewed as continuous relaxations of LUTs which represent equations of the

form f : [−1, 1]n −→ [−1, 1].

|f(x)| =

∣∣∣∣∣∣
∑

a∈{−1, 1}n
(α sign (T [a]) + (1− α) T [a])

n∏
i=1

1 + aixi

2

∣∣∣∣∣∣
≤

∑
a∈{−1, 1}n

∣∣∣∣∣(α sign (T [a]) + (1− α) T [a])
n∏

i=1

1 + aixi

2

∣∣∣∣∣
≤

∑
a∈{−1, 1}n

n∏
i=1

1 + aixi

2
(since aixi ≥ −1 for xi ∈ [−1, 1])

=
∑

a∈{−1, 1}n−1

1− xn

2

n−1∏
i=1

1 + aixi

2
+

∑
a∈{−1, 1}n−1

1 + xn

2

n−1∏
i=1

1 + aixi

2

=
∑

a∈{−1, 1}n−1

n−1∏
i=1

1 + aixi

2
=

∑
a∈{−1, 1}n−2

n−2∏
i=1

1 + aixi

2
= . . . = 1

(6.6)

The alpha-blending learning rule provides excellent accuracy, but like the pre-

vious method, it proved difficult to scale to larger models due to its slow execution

speed and large memory footprint.

106

6.2.4 Extended Finite Difference

The Extended Finite Difference (EFD) learning rule for multilayer WNNs was

originally proposed by A. Bacellar [22]. EFD uses a gradient spreading approach based

on Hamming distance, but applies it to the gradients of the inputs as in Equation 6.7,

rather than applying it to the table entries as my original Finite Difference method

did. EFD allows a network that is trained using EFD to consider table entries that

are non-Hamming-adjacent when determining input gradients. This is critical since

multiple inputs could potentially change during the same training pass, causing an

abrupt shift to a more distant table position.

∂f

∂xj

=
∑

a∈{−1, 1}n

ajT [a]

dH(a, x) +
ajxj−1

2
+ 1

(6.7)

6.2.4.1 Polynomial EFD

While the EFD algorithm as specified in Equation 6.7 is effective, it is prone to

causing exploding gradients with deeper models. For instance, as shown in Figure 6.4,

when training a 10-layer DWN with this approach, the average parameter gradient in

the first layer of the model exceeds the average in the last layer by a factor of more

than 1012. On the other hand, the alpha-blending technique, which can also consider

table entries that are further away due to its use of continuous-valued entries in x,

does not exhibit this behavior.

To help stabilize gradients, I created a variant of EFD which leverages in-

terpolating polynomials similarly to alpha-blending, shown in Equation 6.8. With

this approach, the values of x are multiplied by a “hardness” coefficient h ∈ [0, 1].

h = 1 gives behavior identical to the conventional Finite Difference learning rule,

while h = 0 gives equal weight to all LUT entries. I have empirically found that

h = 0.5 works well.

107

0 1 2 3 4 5 6 7 8 9
Layer Index

10 5

10 3

10 1

101

103

105

107

Av
er

ag
e

Gr
ad

ie
nt

Alpha-Blending
Hamming EFD
Polynomial EFD

Figure 6.4: Average gradients (taken across all batches on the tenth epoch of train-
ing) for ten-layer DWNs using the alpha-blending, Hamming EFD, and polynomial
EFD strategies. While the Hamming EFD strategy is quick to train, it encounters
instability with deeper model architectures. The polynomial EFD technique resolves
this issue while maintaining speed and accuracy.

∂f

∂xj

=
∑

a∈{−1, 1}n
T [a]

aj
2

j−1∏
i=1

1 + haixi

2

n∏
i=j+1

1 + haixi

2
(6.8)

This polynomial-based approach gives much more stable gradients for deeper

models than Hamming distance-based EFD. However, like in alpha-blending, this

function is expensive to evaluate explicitly. Unlike alpha-blending, x is guaranteed

to be binary when using EFD, which enables optimizations during the forward and

backward passes. During the forward pass of the model, a table lookup can be

used instead of evaluating the interpolating polynomial. During the backwards pass,

observe that T and x are the only variables in Equation 6.8, and x can only assume

2n possible unique values. Therefore, I precompute a three-dimensional tensor of

partial results for all possible values of j and x, a row from which can be selected and

multiplied with the contents of the LUT T , greatly reducing the time to calculate

this gradient. Table 6.1 shows that this optimization allows this polynomial EFD

strategy to run as quickly as the original EFD; additionally, its accuracy is generally

equal or slightly better.

108

6.3 Optimizing DWNs

Beyond the choice of learning rule, I explored several ways to further improve

the accuracy and efficiency of DWNs. These include regularization strategies and a

way of performing classification that eliminates the need for separate RAM nodes for

each class in the last layer.

6.3.1 Regularization Strategies

Like ULEEN, DWNs can be prone to overfitting. In fact, even very small

DWNs can sometimes perfectly memorize their training data. Unfortunately, con-

ventional DNN regularization techniques can not be applied directly to DWNs. For

instance, since only the sign of a table entry is relevant for address calculation during

inference, using L1 or L2 regularization to push entries towards 0 during training

results in instability as values repeatedly flip from positive to negative. Therefore, I

developed two regularization strategies to aid in generalization.

6.3.1.1 Spectral Normalization

Spectral regularization is a normalization technique which penalizes the rep-

resentation of complex behaviors in LUTs.For an n-input pseudo-Boolean function

f : {−1, 1}n → R, I define the L2 spectral norm of f as:

1

2n

∥∥∥{ ∑
x∈{−1,1}n

f(x)
(∏

i∈S

xi

) ∣∣∣ S ∈ [n]
}∥∥∥

2

Note that this is simply the L2 norm of the Fourier coefficients of f [116]. Addition-

ally, since all terms except f(x) are constant, it is possible to precompute a coefficient

matrix C ∈ R2n×2n to simplify evaluation of the spectral norm at runtime. In partic-

ular, for a layer of u LUTs with n inputs each and data matrix L ∈ [−1, 1]u×2n , the

spectral norm can be written as:

specnorm(L) = ∥LC∥2, Cij :=
1

2n

∏
a∈{b | ib=1}

ja

109

The effect of spectral regularization is to increase the resiliency of the model to

perturbations of single inputs. For instance, if an entry in a RAM node is never

accessed during training, but all locations at a Hamming distance of 1 away hold the

same value, then the unaccessed location should most likely hold this value as well.

I find that spectral normalization usually works best for small models—for

DWNs with more RAM nodes, it has minimal effect, and sometimes can even slightly

harm accuracy. One possible explanation for this behavior is that small models may

need for LUTs to act as “generalists” which are sensitive to a large number of behav-

iors, while larger models can afford for LUTs to have more specialized responses.

6.3.1.2 Random Bitflip Injection

A simple but effective form of regularization is to corrupt a small (∼3%)

portion of the inputs to a layer of LUTs by introducing random bitflips. Doing so

helps to limit the dependence of the model on any single bit holding a specific value.

This form of regularization is conceptually similar to the dropout [135] technique used

for training DNNs. In fact, dropout can also be applied to the outputs of the last

layer of LUTs, before summation is performed. However, I have found that while

random bitflips provide a small but consistent increase in accuracy, especially for

larger models, the impact of traditional dropout is less clear.

6.3.2 Ternary Summation

Rather than dedicating a separate set of LUTs to each class in the last layer

of a DWN, the outputs of a shared set of LUTs can be passed into a ternary-weighted

linear classifier. This means that each LUT can have a learned positive (w=+1),

neutral (w=0), or negative (w=−1) impact on the response score for each class.

Reusing LUTs in this way makes it possible to reduce the size of the last layer of the

model. Strictly speaking, the addition of the linear classifier makes this no longer a

weightless model, but the number of weights is negligible when compared to both the

110

number of non-weight parameters as well as the number of weights in a comparable

BNN, as shown in Table 6.2.

Model Weights Non-Weight Parameters Accuracy

FINN (BNN) 930,816 (114 KiB) 0 97.7%
DWN 0 96,000 (11.7 KiB) 97.8%

Ternary DWN 3,000 (0.58 KiB) 83,200 (10.2 KiB) 97.9%

Table 6.2: Impact of ternary summation on DWNs.

In a hardware accelerator for inference, the ternary-weighted layer can be

implemented by performing two popcounts for each class, corresponding to LUTs

with weights +1 and −1, respectively, and then taking the difference. However,

the area overhead for the additional popcount is usually larger than the savings

from sharing LUTs. Therefore, the ternary summation strategy is better suited for

cases where minimizing the paramter size of the model is more important, such as a

memory-limited microcontroller implementation.

6.3.3 Learnable Mapping

WNNs conventionally use a random mapping of inputs to LUTs. A. Bacel-

lar [22] developed an alternative strategy which instead allows for the connectivity of

LUTs to be learned during the training process. This strategy involves maintaining a

matrix of weights which indicate the affinity of each LUT input for each model input.

During the forward training pass, the indices of the highest-valued weights are used

to select the inputs to LUTs; during the backward pass, an approach based on the

softmax of connection weights is used to compute weight gradients. After training,

the inputs corresponding to the highest-valued weights are chosen to form a static

mapping, so this technique has no inference overhead.

Using learnable mappings for multiple layers of LUTs in a model can degrade

accuracy, likely due to the cascading disruptions that can occur when several levels

111

of interconnect are altered simultaneously. Therefore, learnable mapping is normally

only used before the first layer of LUTs in DWNs.

6.3.4 Other Optimizations Explored

In the pursuit of optimizing DWNs, I explored several other approaches that

were ultimately unsuccessful. Some of these approaches merit brief discussions, par-

ticularly since they may help to inform future research in this domain.

• Stochastic Binarization: Instead of using the signs of table entries to de-

termine LUT outputs, I explored treating table entries as Bernoulli random

variables with p = (T [x] + 1)/2 during training, which is similar to the ap-

proach used for MPLNs. This had no discernible impact on accuracy, which

mirrors results that were observed for BNNs [43], but it increased training times

due to the need for random sampling.

• Skeletal Mapping: The Lottery Ticket Hypothesis [57] states that DNNs

contain sparse subnetworks which, when trained from initialization, can reach

accuracy similar to the original model. In other words, the connections in a DNN

that will ultimately be important are determined at initialization rather than

during training. Several works have explored methods to identify these critical

connections a priori and train pre-pruned, “skeletonized” models. I adapted

one of these techniques, FORCE [46], to initialize WNNs. My approach uses

subnetwork equivalents similar to §6.2.2 but connected to all outputs in the pre-

vious layer, which are then pruned down to the desired number of inputs (i.e.,

n) using the modified FORCE strategy, and lastly converted into LUTs which

are trained using polynomial EFD. The advantage of this approach to connect-

ing LUTs is that it only needs to be done once at initialization, allowing it to

train more quickly than learnable mapping, which requires continual updates to

a large weight matrix. However, while skeletal mapping performs better than

random initialization, learnable mapping remains significantly more accurate.

112

This concurs with recent work [88] which argues that initialization-time pruning

must inherently result in greater loss of accuracy.

• Ensembling and Mixtures of Experts: I explored both additive submodel

ensembles of DWNs, similar to what I used for ULEEN, and a modified, weight-

less version of a mixture-of-experts (MoE) algorithm [131] which uses a gating

network to select a subset of “expert” subnetworks to run. Additive ensem-

bles did not have any clear advantage over monolithic models of the same total

size, which contradicts my observations with ULEEN. This suggests that the

ensembling strategies which are effective for multilayer WNNs are different than

those for single-layer models. The MoE degraded accuracy unless the individ-

ual experts were made very large (which defeats its purpose); it is possible that

a different approach to MoE would give better results, or that the minimum

model size needed for MoE to be beneficial is larger than what I am targeting

with DWNs.

• Learnable Thermometer Thresholds: Since all layers of LUTs, including

the first, can backpropagate gradients to their inputs, it seemed reasonable

to try using gradient information to update thermometer encoding thresholds.

I developed a differentiable input binarization scheme that divided an input

feature by its standard deviation, subtracted a learned threshold parameter,

and took the sign of the hyperbolic tangent of the result (so that input values

far from the threshold would have less impact on its gradient). This improved

accuracy when using random mapping, but caused degradation when using

learnable mapping. Notably, even if I trained a model with learnable mapping

and fixed thresholds, replaced the final learnable mapping with an equivalent

fixed mapping, and then fine-tuned the thresholds, accuracy still stayed the

same or decreased.

113

6.4 DWN Software Model

Training of DWNs is performed using learnable mapping and either the Ham-

ming or polynomial EFD learning rules, as described previously. Instead of the Gaus-

sian thermometer encoding that I used for BTHOWeN and ULEEN, DWNs use the

recently developed Distributive thermometer encoding [21]. I train using the Adam

optimizer for 100 epochs, with a starting learning rate of 1e-3 and a factor of 10

reduction after every 30 epochs. I also use a softmax temperature derived from the

method used in DiffLogicNet [120], with τ = 10 ·
√

10
log10(m

300)
for a model with m

RAM nodes per class in the last layer.

After training, learnable mapping is converted into a fixed interconnect by

finding the indices of the largest weights for each LUT input and forming connections

to the corresponding model inputs. Lookup tables are binarized using the sign func-

tion, as in ULEEN. The result of this process is a multilayer model which is entirely

free of arithmetic except for the popcounts after the last LUT layer. An extremely

simple DWN for the Iris [56] dataset is shown in Figure 6.5 in its post-training form.

6.5 DWN Inference Accelerator

I deploy inference accelerators for DWN models on the Xilinx Zynq Z-7045,

the same device that was used for FINN [145] and ULEEN [139]. I also reuse the

input compression scheme that I developed for ULEEN, and target the same clock

frequency of 200 MHz. The elimination of time-multiplexed hashing, which required

the propagation of stall signals backwards through the accelerator, removes the need

for double-buffering in the bus deserialization and decompression units. This signif-

icantly reduces the number of flip-flops in the design and provides some savings in

LUT counts due to simplified buffering logic. Figure 6.6 gives a high-level overview

of my DWN accelerator design. Xilinx FPGAs are largely composed of configurable

logic blocks (CLBs), which are in turn composed of six-input lookup tables (LUT-6s),

114

1

1

1

1
0

1
1
1
0
1
0
1
0

0
1

0
0

1

0

0

0
0

0
0

0
1
1
1

1
0
1
1
1
0
1
0

0
0
0
1

1

0

1
1
0
1
0
1
0
0

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

f(x, y, z)

+

+

+

a1

a2

a3

> 6.2

> 2.9

> 3.2

> 5.4

> 2.63

> 4.83

> 0.87

> 1.60

sepal_length

sepal_width

petal_length

petal_width

Input
Encoding/

Preprocessing

1

0
1

0
1

0

0
0
0
1

0

1

1

1

1
1
1

0
0
0

0
1

0
0

1
0
1
0
1
0

Lookup
Tables Summation

(Popcount)

Iris virginica

Iris versicolor

Iris setosa

Figure 6.5: A small, trained DWN for the Iris dataset, demonstrating how the model
is composed out of multiple layers directly chained lookup tables, with the outputs
of one layer forming the address bits to the next.

flip-flops, and miscellaneous interconnect and muxing logic [159].3 The Z-7045 pro-

vides a total of 218,600 LUT-6s, each of which can be used to represent a six-input

RAM node. Therefore, using n=6 is a natural choice when developing DWNs with

the objective of deploying them on Xilinx FPGAs, as it allows them to make efficient

use of hardware resources.

3As shown in Figure 6.6, a LUT-6 can also function as two LUT-5s, but this is only possible if
both LUTs have identical inputs.

115

LUT5

LUT5

Σ

Σ

argmaxInterface/
Decompress

Interconnect

CLB

Figure 6.6: Implementation of a DWN on an FPGA. Each hardware LUT-6 (internally
subdivided into two LUT-5s and a 2:1 MUX) can be used to implement a single six-
input RAM node. Registers are inserted between layers of LUTs to buffer outputs
and improve device timing.

6.6 DWNs on Microcontrollers

I also explore deployment of DWNs on the Elegoo Nano, a tiny microcontroller

(MCU) with only 2 KB of RAM and 30 KB of flash storage (see §3.2.2). Running

BTHOWeN and ULEEN models on this device is impractical: they are simply too

large, particularly since the input mapping information for RAM nodes (i.e., the

indicies of each input to each RAM node into the array of outputs from the previous

layer) must also be stored in device memory. BNNs are also too large; for instance,

even the SFC FINN model has a parameter size of 40.8 KiB. Therefore, the options

for machine learning that are viable on this class of device are very limited. However,

with careful optimization, it is possible for me to fit DWNs within these constraints.

I use two strategies: an approach which uses aggressive bit-packing of LUT data

and mapping information in order to fit larger models at the cost of speed, and an

implementation which foregoes most bit-packing in order to attain the fastest possible

execution speed, but is consequently restricted to smaller, less accurate models.

6.6.1 Bit-packed Implementation

Figure 6.7 shows the memory layout for a packed DWN inference model on

the Elegoo Nano MCU. To reduce storage space, LUT data is packed bitwise, and

input mapping information is compressed by using 10 or 12-bit indices when possible.

116

Map[1,0,11:8] Map[1,1,11:8]
Map[1,2,11:8] Map[1,3,11:8] Map[1,4,11:8] Map[1,5,11:8]

Map[1,0,7:0] Map[1,1,7:0]
Map[1,2,7:0] Map[1,3,7:0] Map[1,4,7:0] Map[1,5,7:0]

m
ap

1_
lo

m
ap

1_
hi

da
ta

1

Layers 2...n

co
de

Scratch0

Scratch1sc
ra

tc
hp

ad
s

SR
AM

 (2 KB)
Fl

as
h

(3
0

KB
)

Map[1,0]
Map[1,1]
Map[1,2]
Map[1,3]
Map[1,4]
Map[1,5]

1 0 1 1 0 0
44

Mapping Address

x

Lookup Result

</>

Figure 6.7: An overview of the data layout of a bit-packed DWN model implemented
on the Elegoo Nano MCU.

For instance, a LUT-6 which comes after a layer of 1000 LUTs can be represented

in 15.5 bytes of flash storage: 8 bytes (2
6

8
) for its data array, and 7.5 bytes (6·10

8
) to

store the indices of the LUTs on the previous layer that produce each input.

My model conversion script automatically determines the minimum possible

bit width for mapping indices in each layer (possible choices are 2, 4, 8, 10, 12,

or 16 bits). For a non-power-of-two bit width (10 or 12 bits), the map is further

subdivided into map lo, which stores the low 8 bits, and map hi, which stores the

remaining high bits. While Figure 6.7 only shows mappings and data for one layer,

these data structures are repeated for each layer in the model. SRAM is divided into

two large scratchpads, which are used alternately between layers. Layer i of a model

reads activations for the previous layer from scratchpad ((i− 1) mod 2) and writes

to scratchpad (i mod 2).

117

Unpacking mapping and data arrays during inference is a relatively slow pro-

cess, particularly since the ATmega328P used in the Nano has poor ISA support

for bitwise operations. For instance, its logical shift instructions can only shift by

one bit position, meaning it takes many instructions to perform larger shifts. By

optimizing the data layout of the model, I am able to somewhat reduce the need for

multi-bit shifts—for instance, if every bit in a byte should be read from or written

to sequentially, organizing this process so that it goes from the least significant to

the most significant bit is much faster than going from MSB to LSB. Additionally,

using bit packing reduces the data footprint of the model in flash by ∼4.5× and in

SRAM by 8×, which significantly increases the complexity of the models that can be

implemented.

6.6.2 Unpacked Implementation

The unpacked model does not perform bit-packing for LUT data or mapping

information, ternary sum weights, and activations, which makes it much faster but

less memory-efficient. Layers are restricted to having at most 256 LUTs, which means

that mapping indices can be represented using 8-bit integers for all layers except the

first (which requires 16-bit integers for datasets with more than 256 inputs).

6.7 Evaluation Methodology

I compare my accelerators for DWNs against ULEEN, fully-connected FINN

models, and DiffLogicNet [120]. DiffLogicNet constructs multilayer feed-forward net-

works out of learned two-input logic gates. It operates by assigning weights for

each of the 16 (222) Boolean functions of two inputs to each gate, which are up-

dated during training. The softmax of these weights is used to determine the prob-

ability of a gate implementing any particular Boolean function. After training, the

Boolean function with the largest weight is chosen for each gate. While the authors

of DiffLogicNet do not describe their model as a weightless neural network, it es-

118

sentially is a multilayer WNN with n = 2. However, this approach scales poorly to

larger values of n; for instance, a DiffLogicNet model with n=6 would require 226 =

18,446,744,073,709,551,616 trained parameters per LUT, while DWNs require 26 =

64.

After training and binarization, DiffLogicNet is similar enough to DWNs with

n=2 that it can be implemented using my accelerator framework with minimal mod-

ification. Therefore, I report hardware results for DiffLogicNet with n=2 and DWNs

with n=2 and n=6. I use the MNIST, KWS, and ToyADMOS datasets from ULEEN,

plus FashionMNIST (which has the same dimensions as MNIST but is considerably

more difficult) and CIFAR-10.

As discussed previously, most approaches to machine learning require too much

memory to run on the Nano MCU, even for inference. XGBoost [39] is a widely-used

tree boosting system notable for its ability to achieve high accuracies with tiny pa-

rameter sizes. Therefore, it is a good choice for this domain. I use the MicroML [129]

library to convert trained XGBoost models into a more efficient form which is in-

tended for inference on MCUs. In order to fit entire samples into the Nano’s SRAM,

I quantize input features to 8-bit integers by linearly scaling the minimum and max-

imum values from 0 to 255. I did not observe significant any significant impact on

accuracy from performing this transformation. All XGBoost models have a max tree

depth of 3, with forest size maximized for the board’s memory. I found that this gave

better results than the default max depth of 6, which required extremely small forests

to fit in the device. The parameter sizes of these XGBoost models are generally quite

small, but their complex control flow means that the source code is large, even after

compiler optimization. For the Arduino comparison, I also include results for three

tabular datasets, phoneme, skin-seg, and higgs, since XGBoost is known to excel on

tabular data. A. Bacellar assisted in training some DWN and DiffLogicNet models

for the FPGA comparison. The FPGA and MCU implementations of DWNs and the

data collection on these devices are wholly my own work.

119

6.8 Results

6.8.1 Selected Models

Table 6.3 summarizes the configuration parameters of the DWN models I used

in my evaluations, including those used for FPGA and MCU deployments. For the

FPGA implementation of MNIST, I used two different model sizes in order to provide

iso-accuracy comparisons with both FINN and DiffLogicNet. For ToyADMOS, I also

used two model sizes since I found that a tiny DWN was able to match prior work,

and a somewhat larger model was significantly more accurate.

Most tabular datasets have only a small number of unique inputs, and seem

to benefit much more from high thermometer resolution than other workloads. I use

128 thermometer bits for these on the bit-packed MCU implementation, and 255 on

the unpacked implementation. The unpacked implementation does not attempt to

fit multiple inputs into a byte, so there is no real disadvantage to using 255 encod-

ing bits per input during inference. I only use 32 encoding bits for the other four

datasets to reduce training times, since they see very little accuracy benefit from

higher resolutions.

6.8.2 FPGA Implementation Results

Table 6.4 shows the results of my comparisons of DWNs against FINN, ULEEN,

and DiffLogicNet on the Z-7045 FPGA. For all datasets except CIFAR-10, the DWN

models are smaller, faster, and more energy-efficient than all prior work, with com-

parable or better accuracy. In particular, latency, throughput, energy per sample,

and hardware area (in terms of FPGA LUTs) are improved by geometric averages

of (20.7, 12.3, 121.6, 11.7)×, respectively, versus FINN, and (3.3, 2.3, 19.0, 22.7)×,

respectively, versus ULEEN. This translates to a 2522× improvement in average

energy-delay product versus FINN and a 63× improvement versus ULEEN. Unlike

the other models listed, FINN supports convolution. This gives it vastly superior

accuracy on the CIFAR-10 dataset, albeit at a hefty cost to speed and energy effi-

120

Target
Platform

Dataset
LUT
Inputs

LUT Layer
Sizes

Encoding
Bits

Ternary
Sum

Parameter
Size (KiB)

FPGA

MNIST
n=2 [6000, 6000] 3 ✗ 5.9
n=6 [1000, 500] 1 ✗ 11.7
n=6 [2000, 1000] 3 ✗ 23.4

FashionMNIST
n=2 [8000, 8000] 7 ✗ 7.8
n=6 [2000, 2000] 7 ✗ 31.3

KWS
n=2 [3000, 3000] 8 ✗ 2.9
n=6 [1600] 8 ✗ 12.5

ToyADMOS
n=2 [900, 900] 2 ✗ 0.9
n=6 [400] 2 ✗ 3.1
n=6 [1800, 1800] 3 ✗ 28.1

CIFAR-10
n=2 [24000, 24000] 10 ✗ 23.4
n=6 [8000] 10 ✗ 62.5

Packed
MCU

MNIST n=6 [1000, 500] 3 ✓ 12.7
FashionMNIST n=6 [1000, 500] 3 ✓ 12.7
KWS n=6 [1000, 500] 3 ✓ 12.8
ToyADMOS n=6 [1000, 500] 3 ✓ 11.9
phoneme n=6 [1000, 500] 128 ✓ 11.9
skin-seg n=6 [1000, 500] 128 ✓ 11.9
higgs n=6 [1000, 500] 128 ✓ 11.9

Unpacked
MCU

MNIST n=6 [220, 110] 32 ✓ 2.8
FashionMNIST n=6 [220, 110] 32 ✓ 2.8
KWS n=6 [220, 110] 32 ✓ 2.8
ToyADMOS n=6 [220, 110] 32 ✓ 2.6
phoneme n=6 [80, 40] 255 ✓ 1.0
skin-seg n=6 [80, 40] 255 ✓ 1.0
higgs n=6 [90, 90] 255 ✓ 1.4

Table 6.3: Selected DWN model configurations for FPGA and microcontroller de-
ployment.

ciency. As with ULEEN (§5.4.1.1), the lack of convolution limits DWNs’ effectiveness

on datasets with high degrees of positional independence.

Several models in Table 6.4 could not be implemented on the target FPGA

(indicated by a ‘∗’ next to their name). The primary cause of this was routing

congestion. Since it would be infeasibly expensive for FPGAs to implement a full

crossbar interconnect, they instead have a finite number of wires which they assign

121

Dataset Model
Test

Accuracy%
Parameter
Size (KiB)

Latency
(ns)

Throughput
(Samples/s)

Energy
(nJ/Samp.)

LUTs
(1000s)

MNIST

FINN 98.40 355.3 2440 1.56M 5445 83.0
ULEEN† 98.46 262.0 940 4.05M 823 123.1
DiffLogicNet (xs) 96.87 11.7 90 33.3M 17.2 9.6
DiffLogicNet (sm)∗ 97.62 23.4 95 33.3M — 19.1
DWN (n=2; lg) 98.27 5.9 135 25.0M 42.3 10.3
DWN (n=6; sm) 97.80 11.7 60 50.0M 2.5 2.1
DWN (n=6; lg) 98.31 23.4 125 25.0M 19.0 4.6
DWN (n=6; lg; +aug)† 98.77 23.4 135 22.2M 21.6 4.6

Fashion-
MNIST

FINN 84.36 355.3 2440 1.56M 5445 83.0
ULEEN 87.86 262.0 940 4.05M 823 123.1
DiffLogicNet 87.44 11.7 270 9.52M 119.8 11.4
DWN (n=2) 89.12 7.8 255 10.0M 145.4 13.6
DWN (n=6) 89.01 31.3 250 10.0M 90.9 7.6

KWS

FINN 70.60 324 7780 0.67M 5716 42.8
ULEEN 70.34 101.0 390 10.0M 642 141.1
DiffLogicNet∗ 64.18 23.4 265 10.0M — 20.3
DWN (n=2) 70.92 2.9 235 10.5M 79.2 6.8
DWN (n=6) 71.52 12.5 235 10.5M 42.3 4.8

ToyADMOS

FINN 86.10 36.1 3520 1.57M 547 14.1
ULEEN 86.33 16.6 340 11.1M 143 29.4
DiffLogicNet 86.66 3.1 165 16.7M 23.2 3.9
DWN (n=2; sm) 86.68 0.9 115 25.0M 7.6 2.2
DWN (n=6; sm) 86.93 3.1 120 22.2M 5.8 1.3
DWN (n=6; lg) 89.03 28.1 165 16.7M 45.4 6.2

CIFAR-10

FINN 80.10 183.1 283000 21.9K 150685 46.3
ULEEN 54.21 1379 — — — —
DiffLogicNet∗ 57.29 250.0 11510 87.5K — 283.3
DWN (n=2)∗ 57.51 23.4 2200 468K — 45.7
DWN (n=6) 57.42 62.5 2190 468K 3972 16.7

Table 6.4: Implementation results for DWNs and prior efficient inference models, in-
cluding my prior work ULEEN, on a Z-7045 FPGA. ∗Model could not be synthesized;
hardware values are approximate. †ULEEN used augmented data for MNIST, so I
present DWN results for MNIST with and without this augmentation strategy.

signals to during synthesis. In general, routing resources are more readily available

for short-distance signals versus long-distance signals. Both DiffLogicNet and DWNs

have unstructured interconnect between layers. This results in many long wires,

making these models more difficult to route. The DiffLogicNet models and DWNs

with n=2 were more affected by this issue since they need more LUTs (and therefore

more complex interconnect) to match the accuracy of the DWNs with n=6. All DWNs

122

with n=6 were successfully routed and implemented, though congestion would become

an issue for them as well if they were sufficiently scaled up.

An interesting takeaway from these results is that the parameter sizes of DWN

models are not necessarily good predictors of their hardware efficiency. For instance,

the large MNIST model with n=2 has ∼1/4 the parameter size of the n=6 model,

yet more than twice the area and energy consumption. Since modern Xilinx FPGAs

use LUT-6s natively, models with n=6 are inherently more efficient to implement.

Vivado can perform logic optimizations which map multiple DWN LUT-2s to a single

FPGA LUT-6, but this is not enough to offset the ∼4× larger number of RAM nodes

needed to achieve the same accuracy with n=2.

6.8.3 Microcontroller Implementation Results

Table 6.5 compares both DWN implementations against XGBoost on the

Nano. The bit-packed DWN implementation is consistently more accurate than XG-

Boost, by an average of 5.4%, and particularly excels on non-tabular multi-class

datasets such as MNIST and KWS. However, it is considerably slower, by an average

factor of 8.3×. The unpacked implementation is 15% faster than XGBoost and is

still 1.2% more accurate on average, but is slightly less accurate (−0.6%) on one of

the evaluated datasets (higgs). Overall, DWNs are good choices for low-end micro-

controllers when accuracy is the most important consideration, but may not always

be the best option when high throughput is a priority.

6.8.4 Sensitivity Analysis

Table 6.6 shows the results of adding the EFD learning rule and learnable input

mapping to a minimal multilayer DWN. Using EFD without learnable mapping does

not impact accuracy for KWS or CIFAR-10 since there is only one learnable layer

for those two models. EFD increases accuracy by an average of 0.6% on models with

multiple layers, while learnable mapping increases accuracy by 6.0%. When both

123

Dataset
DWN

XGBoost
Bit-Packed Unpacked

Acc. Thrpt Acc. Thrpt Acc. Thrpt

MNIST 97.9% 16.5/s 94.5% 108/s 90.2% 81/s
FashionMNIST 88.2% 16.4/s 84.1% 95/s 83.2% 81/s
KWS 69.6% 16.4/s 53.6% 109/s 51.0% 103/s
ToyADMOS 88.7% 17.7/s 86.1% 112/s 85.9% 94/s
phoneme 89.5% 17.8/s 87.5% 298/s 86.5% 265/s
skin-seg 99.8% 17.5/s 99.7% 298/s 99.4% 268/s
higgs 72.4% 17.1/s 71.2% 254/s 71.8% 245/s

Table 6.5: Model accuracies and throughputs (in inferences per second) for DWNs
and XGBoost on the Elegoo Nano, a low-cost commodity microcontroller. All models
are as large as possible within the constraints of the device’s memory. I created DWN
implementations with and without bit-packing, which reduces the memory footprint
of a model at the cost of inference speed.

improvements are used, accuracy increases by 7.0%, suggesting that they behave

synergistically. Table 6.7 shows the impact of adding spectral normalization to the

models that I use for packed MCU deployment. This gives a significant benefit for

four out of the seven datasets, with an average improvement of 1.2%.

Dataset FD +EFD +LM
+EFD +LM
(Full DWN)

MNIST 96.15% 96.59% 98.30% 98.31%
FashionMNIST 85.74% 86.88% 87.94% 89.01%
KWS 52.33% 52.33% 70.24% 71.52%
ToyADMOS 87.73% 88.02% 88.52% 89.03%
CIFAR-10 48.37% 48.37% 55.36% 57.42%

Table 6.6: Impacts from adding the EFD learning rule and learnable mapping to
minimal multilayer weightless models based on the FD learning rule.

Figure 6.8 summarizes the improvements contributed by the three works dis-

cussed in this dissertation, BTHOWeN, ULEEN, and DWNs, over Bloom WiSARD [130],

which was previously the state-of-the-art for WNNs. My initial implementations of

124

Dataset DWN +SN Change

MNIST 97.82% 97.88% 0.06%
FashionMNIST 87.10% 88.16% 1.06%
KWS 67.17% 69.60% 2.43%
ToyADMOS 88.04% 88.68% 0.64%
phoneme 89.55% 89.50% -0.05%
skin-seg 99.65% 99.83% 0.18%
higgs 68.51% 72.42% 3.91%

Table 6.7: Impacts of spectral normalization on the DWN models used for the
“packed” inference implementation on the Elegoo Nano MCU.

multilayer WNNs could achieve quite small parameter sizes, but suffered in accuracy.

By contrast, the final DWN models have even smaller memory footprints—up to 44×

smaller than ULEEN—while still achieving equal or better accuracy. This establishes

them as compelling options for edge applications in a wide range of contexts.

6.8.5 Additional Comparisons

In the last few years, there has been a rapid growth in interest in edge-

optimized solutions to deep learning, and a proliferation of approaches. I discuss

here a few extra comparisons with some interesting recent works as lagniappe.

6.8.5.1 Versus LogicNets Successors

PolyLUT [17] and NeuraLUT [18] are two very recent works which extend

LogicNets [146] by using a more complex internal representation for NEQ units. Since

ULEEN compared favorably against LogicNets (§5.6), I include a comparison of DWN

against these successor models in Table 6.8. Among the small JSC models, NeuraLUT

has the lowest latency, but it is unclear whether this includes the argmax computation;

if it does not, then the comparable latency of the DWN model is only 1.5ns. Among

the large JSC models, LogicNets uses the fewest flip-flops, but also uses more than

17× the LUTs of the DWN and is 3.8% less accurate. Besides these two exceptions,

125

Bloom WiSARD - 2019

BTHOWeN - 2022

ULEEN - 2023

Multilayer (FD)

DWN - 2024

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%
Te

st
 E

rro
r %

100

101

102

103

M
od

el
 S

ize
 (K

iB
)

MNIST
Test Error
Model Size

Bloom WiSARD - 2019

BTHOWeN - 2022

ULEEN - 2023

Multilayer (FD)

DWN - 2024

0%

10%

20%

30%

40%

50%

60%

70%

Te
st

 E
rro

r %

100

101

102

103

M
od

el
 S

ize
 (K

iB
)

KWS
Test Error
Model Size

Bloom WiSARD - 2019

BTHOWeN - 2022

ULEEN - 2023

Multilayer (FD)

DWN - 2024

0%

10%

20%

30%

40%

50%

Te
st

 E
rro

r %

100

101

102

M
od

el
 S

ize
 (K

iB
)

ToyADMOS/car
Test Error
Model Size

Figure 6.8: Accuracies and model sizes for Bloom WiSARD, BTHOWeN, ULEEN,
and DWNs on the MNIST, KWS, and ToyADMOS datasets. I also show results for
a simpler multilayer WNN without EFD or learnable mapping. Multilayer models
were optimized for parameter size by setting n=2—note the log scale.

the DWN models are superior on all metrics.

6.8.5.2 Versus FPGA-Based XGBoost

There is surprisingly little literature regarding XGBoost on FPGAs. FAXID [59]

proposes an FPGA-based inference accelerator architecture and deploys it using Alveo

U50 and U200 accelerator cards, which are much more capable than the Z-7045 used

for DWNs. Table 6.9 compares DWNs against their XGBoost models on two out of

their four datasets; of the remaining two, one is proprietary, and the other appears

to no longer be available. Despite using a less capable FPGA, the DWN models are

massively superior in area, latency, and energy, while still achieving higher accuracy.

This may suggest that XGBoost is inherently a poor choice for FPGAs due to the

control flow complexity of its tree traversal, or it may merely mean that this is a

domain in which more research is needed.

126

Dataset Model Accuracy LUT FF
Fmax
(MHz)

Latency
(ns)

ADP
(LUT×ns)

MNIST
PolyLUT 96% 70673 4681 378 16 1.1e+06
NeuraLUT 96% 54798 3757 431 12 6.6e+05
DWN (sm) 97.8% 2092 1757 873 9.2 1.9e+04

JSC

(sm)

LogicNets 67.8% 214 244 1585 — —
PolyLUT 72% 12436 773 646 5 6.2e+04
NeuraLUT 72% 4684 341 727 3 1.4e+04
DWN 73.7% 134 106 1361 3.7 4.9e+02

(lg)

LogicNets 71.8% 37931 810 427 13 4.9e+05
PolyLUT 75% 236541 2775 235 21 5.0e+06
NeuraLUT 75% 92357 4885 368 14 1.3e+06
DWN 75.6% 2144 1457 903 8.9 1.9e+04

Table 6.8: Performance of DWNs versus other recent LUT-based models.

Dataset Model Device
Clock
(MHz)

LUTs
(1000s)

FFs
(1000s)

BRAMs
Latency
(ms/10k)

Energy
(mJ/10k)

Test
Acc.%

Madeline
XGB U50 344 244 362 984 3.61 51.6 81.83
XGB U200 341 494 755 1740.5 3.99 39.9 81.83
DWN Z-7045 200 2.6 5.4 0 0.50 0.23 83.30

Fraud
Detection

XGB U50 344 244 362 984 2.27 32.5 93.51
XGB U200 341 494 755 1740.5 2.34 23.4 93.51
DWN Z-7045 200 5.0 7.9 0 0.25 0.16 94.02

Table 6.9: Performance of DWNs versus the FAXID XGBoost accelerator.

6.8.5.3 Versus Boosted Race Trees

Boosted Race Trees [143] are another hardware implementation of tree-based

ensemble methods which use asynchronous logic and temporal coding to reduce circuit

energy. Directly comparing this work with DWNs is difficult since it is implemented as

a 14 nm ASIC while DWNs were evaluated on a 28 nm FPGA. A small Boosted Race

Tree model achieves 95.7% accuracy on the MNIST dataset with 16.1M inferences

per second, while consuming 7.8 nJ per inference. By comparison, the small DWN

model from Table 6.4 achieves 97.8% accuracy on MNIST with 50.0M inferences per

127

second, while consuming 6.6 nJ per inference (2.5 nJ dynamic). Therefore, DWNs

are still superior to this model, even before accounting for the huge improvements in

efficiency we would expect to see from halving the feature size and moving from an

FPGA to an ASIC.

6.8.5.4 Versus Other Tabular Models and Tiny Classifiers

A. Bacellar demonstrated that DWNs also perform well when compared with

Tiny Classifier circuits and a range of leading approaches for tabular data, achieving

state-of-the-art accuracies for many workloads. For more details on these compar-

isons, refer to the paper [22].

6.9 Summary

The Differentiable Weightless Neural Network (DWN) model represents a rad-

ical departure from prior WNNs. Most weightless models, including my prior works,

BTHOWeN and ULEEN, are composed of a single layer of RAM nodes and have

separate discriminators for each output class. Previous multilayer WNNs split RAM

nodes into pyramidal structures, but maintained partitionings between and within

classes. By contrast, DWNs are composed of multiple layers of LUTs with flexible,

learnable interconnect. This allows for the reuse of LUTs and enables model param-

eter sizes far smaller than in any previous WNN, while maintaining state-of-the-art

accuracy.

For edge FPGA inference, DWNs compare favorably against a variety of other

architectures, including ULEEN, FINN, LogicNets, PolyLUT, and NeuraLUT, in ac-

curacy, throughput, latency, and circuit area. DWN models are also small enough to

be implemented on tiny, low-cost microcontrollers, which enables inference with rea-

sonable accuracy and throughput on a device with only 2 KB of RAM. These factors

establish DWNs as a leading solution for machine learning on extreme edge devices.

128

Chapter 7: Conclusion

7.1 Summary

Deploying machine learning on edge devices requires models to be optimized to

reduce their parameter footprints, computational costs, and energy demands. To some

extent, this is possible by applying well-established optimizations such as pruning

and quantization to deep neural networks (DNNs); however, for particularly small

“extreme edge” or “mist” devices such as deeply embedded sensors, this may be

insufficient. To target this domain, prior works have instead used techniques such

as binary neural networks (BNNs) [145], learned gate networks [73, 120], and lookup

table (LUT) conversions of sparse low-precision DNNs [17, 18, 146].

In this dissertation, I proposed new approaches to machine learning on the

extreme edge based on weightless neural networks (WNNs), a class of model which

perform computation using nonlinear LUTs. WNNs can capture complex behaviors

with shallow, sparsely-connected configurations of LUTs, which in theory makes them

appealing for latency-critical tasks. However, prior WNNs lagged behind DNNs and

BNNs in parameter sizes and accuracies, which prevented them from achieving this

potential. Therefore, my research focused on developing small, accurate WNN models

and high-throughput, low-latency, area-and-energy-efficient hardware accelerators via

algorithm-hardware co-design.

I first proposed BTHOWeN [140], a weightless model which includes several

optimizations over the prior weightless state-of-the-art. BTHOWeN introduces count-

ing Bloom filters to bridge an incompatibility between the techniques proposed by

two leading weightless models, optimizes RAM node input hashing to reduce hard-

ware area and energy, and generalizes a Gaussian nonlinear thermometer encoding

technique to improve the fidelity of input encoding. Compared against Bloom WiS-

ARD [130], BTHOWeN reduces average model test errors and parameter sizes by

129

geometric averages of 62% and 56%, respectively, across nine multi-class classifica-

tion datasets. Versus 8-bit quantized DNNs of comparable accuracy implemented

with hls4ml [50], BTHOWeN reduces latency by 91% and dynamic energy by 82%

on an FPGA.

I next introduced ULEEN [137, 138, 139], which provides additional improve-

ments in model accuracy and efficiency. ULEEN proposes a novel multi-pass WNN

learning rule which leverages backpropagation by using continuous-valued Bloom fil-

ters with the straight-through estimator. It also composes ensembles out of small

weightless submodels using an additive aggregation technique, and introduces a weight-

less pruning strategy which can be used to identify and eliminate the least-useful RAM

nodes on either a global or a per-discriminator basis. Using an enhanced FPGA-based

accelerator architecture, ULEEN achieves a 7.1× reduction in steady-state energy per

inference and a 4.5× reduction in area-delay product (ADP) versus fully-connected

BNNs implemented using Xilinx FINN [145]. It also compares favorably against

LogicNets [146], an FPGA platform for extreme-throughput inference.

Lastly, I discussed methods of constructing multilayer WNNs, a challenging

problem given the difficulty of defining derivatives with respect to LUT inputs when

using a backpropagation-based approach to training. I presented several strategies to

training and additional optimizations that were explored, culminating in the develop-

ment of the DWN [22] model. DWNs eliminate the need for hashing and are extraor-

dinarily efficient in terms of parameter size, which enables them to be implemented

in tiny microcontrollers. In particular, compared to an optimized implementation

of XGBoost on an Elegoo Nano, throughput-optimized implementations of DWNs

achieve a 15% speedup with a 1.2% improvement in accuracy. Accuracy-optimized

implementations achieve a 5.4% improvement, albeit with a large (8.3×) slowdown

due to the overhead of manipulating bit-packed data structures. FPGA implementa-

tions of DWNs can be made very efficient by aligning the sizes of the model LUTs

with the underlying FPGA LUTs (i.e., LUT-6s for Xilinx FPGAs). This enables large

130

improvements in energy, latency, and circuit area, yielding a 2522× improvement in

energy-delay product versus FINN and a 63× improvement versus ULEEN.

Overall, although they are not yet suitable for all applications, the optimized

weightless neural networks I presented in this dissertation yield reasonably accurate

models with tiny parameter sizes which can be implemented with exceptionally fast

and efficient hardware. This makes them an important part of the solution for scaling

machine learning to the extreme edge.

7.2 Future Work

There are abundant opportunities for future work in this domain. This section

summarizes a few research directions which show promise to further improve the

efficiency and generality of WNNs.

Convolutional WNNs: Convolutional filters can be represented using one or mul-

tiple LUTs. The polynomial EFD learning rule used for DWNs can be readily adapted

to allow gradient-based updates to these filters, enabling the construction and train-

ing of models conceptually similar to convolutional DNNs (i.e., CNNs). While these

models can achieve accuracies similar to DWNs without convolutional filters, with

smaller parameter sizes, they struggle to achieve significantly higher accuracy. The

challenge here seems to be related to the difficulty of training sparsely-connected con-

volutional filters in general. Solving this problem may necessitate developing a new

form of learnable mapping that can be applied to multiple convolutional layers.

Hybrid Weightless Architectures: Because DWNs allow gradients to be defined

with respect to their inputs, they can be integrated alongside other layers in a DNN

or BNN. One example of where this may be useful is in transformer models, which

contain very large MLPs between self-attention layers. Replacing the MLPs in trans-

formers with DWNs requires some method of producing real-valued output. This

131

could be accomplished by allowing LUTs on the last layer to produce real-valued

output, or by adding a linear layer with real-valued weights.

Improved Hardware for Training and Inference: The memory access patterns

of WNNs have an unusual form of structure, since each LUT is guaranteed to only

access data within a small range, but the exact address it accesses is effectively

random. GPUs are not particularly well-optimized to take advantage of this behavior,

and training is therefore often bottlenecked by memory bandwidth. A hardware

accelerator for training WNNs could be composed of many local memories laid out

with this behavior in mind to provide better performance and assist in the exploration

of more complex models. For inference, strategies should be explored which simplify

the routing between layers, such as time-multiplexing of buses or pseudo-random

mappings with some degree of underlying regular structure.

Online Learning with WNNs: The ability to dynamically update parameters

in WNNs, particularly without needing gradient-based operations, could make them

suitable for edge training or microarchitectural predictors. One work [150] achieved

very promising accuracy using a weightless conditional branch predictor, but its pa-

rameter size was much too large to be practical in hardware. New approaches based

on hashed or multi-layer WNNs with transfer learning could be helpful here.

“Mental Images” with DWNs: The DRASiW model is a modification of WiS-

ARD which enables the generation of new samples after training [65], which can

help in understanding the behaviors that were learned. Similar goals have also been

explored for CNNs, albeit with very different methods [105]. An extension of the

latter technique to DWNs should be reasonably straightforward and may give some

additional insights into the representational ability of these models.

132

Conversion of DNNs to WNNs: Post-training DNN tabularization strategies

such as those based on the MADDNESS [27] algorithm greatly reduce but do not en-

tirely eliminate arithmetic during inference. By contrast, an approach which replaced

layers or sequential groups of layers with DWNs could feasibly be arithmetic-free. A

key challenge in doing this is that DNNs have dense connectivity, which enables them

to learn certain behaviors which are linear but difficult to replicate with a sparsely-

connected weightless model (e.g., the majority function).

Weightless Mixtures of Experts: While I did not have much success using

DWNs as experts or gating models in a mixture-of-experts (MoE) context, I only

explored one approach to this due to time constraints, and weightless adaptations of

more recent work may prove to be more fruitful. It is also possible that the sizes of

the models I was evaluating were simply beneath the minimum size for an MoE to

be beneficial, in which case this will be worth revisiting as DWNs are scaled.

WNNs and Tsetlin Machines: The automata in Tsetlin machines [64] are in

some ways the inverse of the RAM nodes in WNNs. RAM nodes based on LUTs

can learn Boolean functions containing any number of conjunctive clauses, but their

parameter sizes scale exponentially with their number of inputs. Conversely, the

parameter size of a Tsetlin automaton scales linearly with its number of inputs,

but it can only learn a single conjunctive clause. Integrating Tsetlin machines with

DWNs is complicated, since they use a learning mechanism based on an iterated game

that causes discrete state updates. However, if a continuous relaxation of a Tsetlin

machine could be trained using gradient-based methods (similar to how DWNs are

to some extent continuous relaxations of prior multi-layer WNNs), this could aid in

the development of hybrid model architectures or differentiable Tsetlin machines.

133

Works Cited

[1] 4Paradigm. Madeline dataset. URL https://www.openml.org/search?

type=data&sort=runs&id=41144&status=active.

[2] Youssef Abadade, Anas Temouden, Hatim Bamoumen, Nabil Benamar, Yousra

Chtouki, and Abdelhakim Senhaji Hafid. A comprehensive survey on TinyML.

IEEE Access, 11:96892–96922, 2023. doi: 10.1109/ACCESS.2023.3294111.

[3] Miguel Á. Abella-González, Pedro Carollo-Fernández, Louis-Noël Pouchet, Fab-

rice Rastello, and Gabriel Rodŕıguez. PolyBench/Python: benchmarking

Python environments with polyhedral optimizations. In Proceedings of the

30th ACM SIGPLAN International Conference on Compiler Construction, CC

2021, page 59–70, New York, NY, USA, 2021. Association for Computing

Machinery. ISBN 9781450383257. doi: 10.1145/3446804.3446842. URL

https://doi.org/10.1145/3446804.3446842.

[4] Jyotibdha Acharya, Arindam Basu, Robert Legenstein, Thomas Limbacher,

Panayiota Poirazi, and Xundong Wu. Dendritic computing: Branching deeper

into machine learning. Neuroscience, 489:275–289, 2022. ISSN 0306-4522. doi:

https://doi.org/10.1016/j.neuroscience.2021.10.001. Dendritic contributions to

biological and artificial computations.

[5] Stefan Aeberhard and M. Forina. Wine dataset. UCI Machine Learning

Repository, 1991. URL https://doi.org/10.24432/C5PC7J.

[6] R. Al-Alawi and T.J. Stonham. A training strategy and functionality analysis

of digital multi-layer neural networks. Journal of Intelligent Systems, 2(1-4):

53–94, 1992. doi: doi:10.1515/JISYS.1992.2.1-4.53. URL https://doi.org/

10.1515/JISYS.1992.2.1-4.53.

134

https://www.openml.org/search?type=data&sort=runs&id=41144&status=active
https://www.openml.org/search?type=data&sort=runs&id=41144&status=active
https://doi.org/10.1145/3446804.3446842
https://doi.org/10.24432/C5PC7J
https://doi.org/10.1515/JISYS.1992.2.1-4.53
https://doi.org/10.1515/JISYS.1992.2.1-4.53

[7] Raida Al Alawi. FPGA implementation of a pyramidal weightless neural net-

works learning system. International journal of neural systems, 13:225–37, 09

2003. doi: 10.1142/S012906570300156X.

[8] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

Roman Genov, and Andreas Moshovos. Bit-pragmatic deep neural network

computing. In 2017 50th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 382–394, 2017.

[9] I. Aleksander. Canonical neural nets based on logic nodes. In 1989 First

IEE International Conference on Artificial Neural Networks, (Conf. Publ. No.

313), pages 110–114, 1989.

[10] I. Aleksander, W.V. Thomas, and P.A. Bowden. WISARD: a radical step

forward in image recognition. Sensor Review, 4(3):120–124, 1984. ISSN 0260-

2288. doi: 10.1108/eb007637. URL https://www.emerald.com/insight/

content/doi/10.1108/eb007637/full/html.

[11] Igor Aleksander, Thomas Clarke, and Antônio Braga. Binary neural systems:

combining weighted and weightless properties. Intelligent Systems Engineering,

3:211 – 221, 02 1994. doi: 10.1049/ise.1994.0022.

[12] Igor Aleksander, Massimo De Gregorio, Felipe França, Priscila Lima, and Helen

Morton. A brief introduction to weightless neural systems. In 17th European

Symposium on Artificial Neural Networks (ESANN), pages 299–305, 04 2009.

[13] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot.

Ternary neural networks for resource-efficient AI applications. In 2017 In-

ternational Joint Conference on Neural Networks (IJCNN), pages 2547–2554,

2017. doi: 10.1109/IJCNN.2017.7966166.

[14] P. Alinat. Periodic progress report 4. Technical report, ROARS Project

ESPRIT II- Number 5516, 1993.

135

https://www.emerald.com/insight/content/doi/10.1108/eb007637/full/html
https://www.emerald.com/insight/content/doi/10.1108/eb007637/full/html

[15] Edgar Anderson. The species problem in iris, 1936.

[16] Renzo Andri, Lukas Cavigelli, Davide Rossi, and Luca Benini. YodaNN: An

architecture for ultralow power binary-weight CNN acceleration. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 37(1):

48–60, 2018. doi: 10.1109/TCAD.2017.2682138.

[17] Marta Andronic and George A. Constantinides. PolyLUT: learning piecewise

polynomials for ultra-low latency FPGA LUT-based inference. In 2023 Inter-

national Conference on Field Programmable Technology (ICFPT), pages 60–68.

IEEE, 2023.

[18] Marta Andronic and George A. Constantinides. NeuraLUT: Hiding neu-

ral network density in boolean synthesizable functions. arXiv preprint

arXiv:2403.00849, 2024.

[19] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain,

Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski,

Geeta Chauhan, Anjali Chourdia, Will Constable, Alban Desmaison, Zachary

DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael Gschwind, Brian Hirsh,

Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario

Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yun-

jie Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio

Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang, Xiaodong Wang,

William Wen, Shunting Zhang, Xu Zhao, Keren Zhou, Richard Zou, Ajit

Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2:

Faster machine learning through dynamic Python bytecode transformation

and graph compilation. In 29th ACM International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, Volume

2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366. URL

https://pytorch.org/assets/pytorch2-2.pdf.

136

https://pytorch.org/assets/pytorch2-2.pdf

[20] Austin Appleby. Murmurhash3. https://github.com/aappleby/smhasher,

2016.

[21] Alan Bacellar, Zachary Susskind, Luis Villon, Igor Miranda, Leandro Santiago,

Diego Dutra, Mauricio Jr, Lizy John, Priscila Lima, and Felipe França. Dis-

tributive thermometer: A new unary encoding for weightless neural networks.

pages 31–36, 01 2022. doi: 10.14428/esann/2022.ES2022-94.

[22] Alan Tendler Leibel Bacellar, Zachary Susskind, Mauricio Breternitz Jr, Eu-

gene John, Lizy Kurian John, Priscila Machado Vieira Lima, and Felipe M.G.

França. Differentiable weightless neural networks. In Forty-first Interna-

tional Conference on Machine Learning, 2024. URL https://openreview.

net/forum?id=GBxflz0qdX.

[23] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat

Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed,

Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro,

Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh, Hon-

son Tran, Nhan Tran, Niu Wenxu, and Xu Xuesong. MLPerf tiny benchmark.

Proceedings of the Neural Information Processing Systems Track on Datasets

and Benchmarks, 2021.

[24] Michael Bayer. Mako templates for Python, 2021. URL https://www.

makotemplates.org/.

[25] Younes Ben Mazziane, Sara Alouf, and Giovanni Neglia. A formal analysis of

the count-min sketch with conservative updates. 05 2022.

[26] Rajen Bhatt and Abhinav Dhall. Skin Segmentation dataset. UCI Machine

Learning Repository, 2012. URL https://doi.org/10.24432/C5T30C.

[27] Davis Blalock and John Guttag. Multiplying matrices without multiplying,

2021.

137

https://github.com/aappleby/smhasher
https://openreview.net/forum?id=GBxflz0qdX
https://openreview.net/forum?id=GBxflz0qdX
https://www.makotemplates.org/
https://www.makotemplates.org/
https://doi.org/10.24432/C5T30C

[28] W. W. Bledsoe and C. L. Bisson. Improved memory matrices for the n-tuple

pattern recognition method. IRE Transactions on Electronic Computers, EC-

11(3):414–415, 1962. doi: 10.1109/IRETELC.1962.5407930.

[29] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine.

In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM

Computer Conference, IRE-AIEE-ACM ’59 (Eastern), page 225–232, New York,

NY, USA, 1959. Association for Computing Machinery. ISBN 9781450378680.

doi: 10.1145/1460299.1460326. URL https://doi.org/10.1145/1460299.

1460326.

[30] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, July 1970. ISSN 0001-0782. doi: 10.1145/

362686.362692. URL https://doi.org/10.1145/362686.362692.

[31] Ernesto Burattini, Massimo De Gregorio, Victor M. G. Ferreira, and Felipe

M. G. França. NSP: a neuro–symbolic processor. In José Mira and José R.

Álvarez, editors, Artificial Neural Nets Problem Solving Methods, pages 9–16,

Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. ISBN 978-3-540-44869-3.

[32] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-

All: Train one network and specialize it for efficient deployment, 2019. URL

https://arxiv.org/abs/1908.09791.

[33] Douglas O. Cardoso, Danilo Carvalho, Daniel S. F. Alves, Diego F. P. de Souza,

Hugo C. C. Carneiro, Carlos E. Pedreira, Priscila M. V. Lima, and Felipe M. G.

França. Financial credit analysis via a clustering weightless neural classifier.

Neurocomputing, 183:70–78, 2016.

[34] J.Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143–154, 1979. ISSN 0022-

0000. doi: https://doi.org/10.1016/0022-0000(79)90044-8. URL https://

www.sciencedirect.com/science/article/pii/0022000079900448.

138

https://doi.org/10.1145/1460299.1460326
https://doi.org/10.1145/1460299.1460326
https://doi.org/10.1145/362686.362692
https://arxiv.org/abs/1908.09791
https://www.sciencedirect.com/science/article/pii/0022000079900448
https://www.sciencedirect.com/science/article/pii/0022000079900448

[35] Danilo Carvalho, Hugo Carneiro, Felipe França, and Priscila Lima. B-

bleaching: Agile overtraining avoidance in the WiSARD weightless neural clas-

sifier. In ESANN, 04 2013.

[36] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. QuIP:

2-bit quantization of large language models with guarantees, 2024.

[37] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and

Chang Xu. AdderNet: Do we really need multiplications in deep learning?

In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1465–1474, 2020. doi: 10.1109/CVPR42600.2020.00154.

[38] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review.

Proceedings of the IEEE, 107(8):1655–1674, 2019. doi: 10.1109/JPROC.2019.

2921977.

[39] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’16, page 785–794, New York, NY, USA,

2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.

1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785.

[40] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural

network pruning-taxonomy, comparison, analysis, and recommendations, 2023.

[41] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantiza-

tion of neural networks for efficient inference. In 2019 IEEE/CVF International

Conference on Computer Vision Workshop (ICCVW), pages 3009–3018, 2019.

doi: 10.1109/ICCVW.2019.00363.

[42] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryCon-

nect: Training deep neural networks with binary weights during propagations.

139

https://doi.org/10.1145/2939672.2939785

In Proceedings of the 28th International Conference on Neural Information Pro-

cessing Systems - Volume 2, NIPS’15, page 3123–3131, Cambridge, MA, USA,

2015. MIT Press.

[43] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to +1 or -1, 2016.

[44] Erika Covi, Elisa Donati, Xiangpeng Liang, David Kappel, Hadi Heidari, Melika

Payvand, and Wei Wang. Adaptive extreme edge computing for wearable

devices. Frontiers in Neuroscience, 15, 2021. ISSN 1662-453X. doi: 10.3389/

fnins.2021.611300. URL https://www.frontiersin.org/article/10.3389/

fnins.2021.611300.

[45] Nhu-Ngoc Dao, Yunseong Lee, Sungrae Cho, Eungha Kim, Ki-Sook Chung,

and Changsup Keum. Multi-tier multi-access edge computing: The role for the

fourth industrial revolution. In 2017 International Conference on Information

and Communication Technology Convergence (ICTC), pages 1280–1282, 2017.

doi: 10.1109/ICTC.2017.8190921.

[46] Pau de Jorge, Amartya Sanyal, Harkirat Behl, Philip Torr, Grégory Rogez, and

Puneet K. Dokania. Progressive skeletonization: Trimming more fat from a

network at initialization. In International Conference on Learning Representa-

tions, 2021. URL https://openreview.net/forum?id=9GsFOUyUPi.

[47] David Deterding, Mahesan Niranjan, and Tony Robinson. Connectionist Bench

(Vowel Recognition - Deterding Data) dataset. UCI Machine Learning Repos-

itory. URL https://doi.org/10.24432/C58P4S.

[48] Thomas G. Dietterich. Ensemble methods in machine learning. In Multi-

ple Classifier Systems, pages 1–15, Berlin, Heidelberg, 2000. Springer Berlin

Heidelberg. ISBN 978-3-540-45014-6.

140

https://www.frontiersin.org/article/10.3389/fnins.2021.611300
https://www.frontiersin.org/article/10.3389/fnins.2021.611300
https://openreview.net/forum?id=9GsFOUyUPi
https://doi.org/10.24432/C58P4S

[49] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pentto-

nen. A reliable randomized algorithm for the closest-pair problem. Journal of

Algorithms, 25(1):19–51, 1997. ISSN 0196-6774. doi: https://doi.org/10.1006/

jagm.1997.0873. URL https://www.sciencedirect.com/science/article/

pii/S0196677497908737.

[50] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis, J. Ngadi-

uba, M. Pierini, R. Rivera, N. Tran, and Z. Wu. Fast inference of deep neu-

ral networks in FPGAs for particle physics. Journal of Instrumentation, 13

(07):P07027–P07027, jul 2018. doi: 10.1088/1748-0221/13/07/p07027. URL

https://doi.org/10.1088/1748-0221/13/07/p07027.

[51] Mostafa Elhoushi, Zihao Chen, Farhan Shafiq, Ye Henry Tian, and Joey Yi-

wei Li. DeepShift: Towards multiplication-less neural networks. In 2021

IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-

shops (CVPRW), pages 2359–2368, 2021. doi: 10.1109/CVPRW53098.2021.

00268.

[52] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer

depth on demand with structured dropout. In International Conference on

Learning Representations, 2020. URL https://openreview.net/forum?id=

SylO2yStDr.

[53] Victor C. Ferreira, Alexandre S. Nery, Leandro A. J. Marzulo, Leandro San-

tiago, Diego Souza, Brunno F. Goldstein, Felipe M. G. França, and Vladimir

Alves. A feasible FPGA weightless neural accelerator. In 2019 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), pages 1–5, 2019. doi:

10.1109/ISCAS.2019.8702797.

[54] Victor M. G. Ferreira and Felipe M. G. França. Weightless implementations

of weighted neural networks. In Anais do IV Simpósio Brasileiro de Redes

Neurais, 1997.

141

https://www.sciencedirect.com/science/article/pii/S0196677497908737
https://www.sciencedirect.com/science/article/pii/S0196677497908737
https://doi.org/10.1088/1748-0221/13/07/p07027
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr

[55] E.C.D.B.C. Filho, M.C. Fairhurst, and D.L. Bisset. Adaptive pattern recog-

nition using goal seeking neurons. Pattern Recognition Letters, 12(3):131–

138, 1991. ISSN 0167-8655. doi: https://doi.org/10.1016/0167-8655(91)

90040-S. URL https://www.sciencedirect.com/science/article/pii/

016786559190040S.

[56] R. A. Fisher. Iris dataset. UCI Machine Learning Repository, 1988. URL

https://doi.org/10.24432/C56C76.

[57] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding

sparse, trainable neural networks. In ICLR. OpenReview.net, 2019. URL

http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19.

[58] Joshua Fromm, Meghan Cowan, Matthai Philipose, Luis Ceze, and Shwetak

Patel. Riptide: Fast end-to-end binarized neural networks. In I. Dhillon,

D. Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and

Systems, volume 2, pages 379–389, 2020. URL https://proceedings.mlsys.

org/paper/2020/file/2a79ea27c279e471f4d180b08d62b00a-Paper.pdf.

[59] Archit Gajjar, Priyank Kashyap, Aydin Aysu, Paul Franzon, Sumon Dey, and

Chris Cheng. FAXID: FPGA-accelerated XGBoost inference for data centers

using HLS. In 2022 IEEE 30th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 1–9, 2022. doi:

10.1109/FCCM53951.2022.9786085.

[60] S.I. Gallant. Perceptron-based learning algorithms. IEEE Transactions on

Neural Networks, 1(2):179–191, 1990. doi: 10.1109/72.80230.

[61] Lulu Ge and Keshab K. Parhi. Classification using hyperdimensional comput-

ing: A review. IEEE Circuits and Systems Magazine, 20(2):30–47, 2020. doi:

10.1109/MCAS.2020.2988388.

142

https://www.sciencedirect.com/science/article/pii/016786559190040S
https://www.sciencedirect.com/science/article/pii/016786559190040S
https://doi.org/10.24432/C56C76
http://dblp.uni-trier.de/db/conf/iclr/iclr2019.html#FrankleC19
https://proceedings.mlsys.org/paper/2020/file/2a79ea27c279e471f4d180b08d62b00a-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/2a79ea27c279e471f4d180b08d62b00a-Paper.pdf

[62] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,

and Kurt Keutzer. A survey of quantization methods for efficient neural net-

work inference, 2021.

[63] Kiran Gopinathan and Ilya Sergey. Certifying certainty and uncertainty

in approximate membership query structures. In Shuvendu K. Lahiri and

Chao Wang, editors, Computer Aided Verification, pages 279–303, Cham, 2020.

Springer International Publishing. ISBN 978-3-030-53291-8.

[64] Ole-Christoffer Granmo. The Tsetlin machine – a game theoretic bandit driven

approach to optimal pattern recognition with propositional logic, 2021.

[65] Bruno P. A. Grieco, Priscila M. V. Lima, Massimo De Gregorio, and Felipe

M. G. França. Producing pattern examples from “mental” images. Neurocom-

put., 73(7-9):1057–1064, March 2010. ISSN 0925-2312. doi: 10.1016/j.neucom.

2009.11.015. URL http://dx.doi.org/10.1016/j.neucom.2009.11.015.

[66] Qingyu Guo, Xiaoxin Cui, Jian Zhang, Aifei Zhang, Xinjie Guo, and Yuan

Wang. A 4-bit integer-only neural network quantization method based on

shift batch normalization. In 2022 IEEE International Symposium on Circuits

and Systems (ISCAS), pages 707–711, 2022. doi: 10.1109/ISCAS48785.2022.

9938013.

[67] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gom-

mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-

tian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,

Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández

del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Shep-

pard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke,

and Travis E. Oliphant. Array programming with NumPy. Nature, 585

(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL

https://doi.org/10.1038/s41586-020-2649-2.

143

http://dx.doi.org/10.1016/j.neucom.2009.11.015
https://doi.org/10.1038/s41586-020-2649-2

[68] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. ADASYN: Adaptive

synthetic sampling approach for imbalanced learning. In 2008 IEEE Interna-

tional Joint Conference on Neural Networks (IEEE World Congress on Com-

putational Intelligence), pages 1322–1328, 2008. doi: 10.1109/IJCNN.2008.

4633969.

[69] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.

AMC: AutoML for model compression and acceleration on mobile devices.

In European Conference on Computer Vision, 2018. URL https://api.

semanticscholar.org/CorpusID:52048008.

[70] Mark Horowitz. 1.1 Computing’s energy problem (and what we can do about

it). In 2014 IEEE International Solid-State Circuits Conference Digest of Tech-

nical Papers (ISSCC), pages 10–14, 2014. doi: 10.1109/ISSCC.2014.6757323.

[71] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks. In D. Lee, M. Sugiyama,

U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 29. Curran Associates,

Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/

d8330f857a17c53d217014ee776bfd50-Paper.pdf.

[72] Justin C. Hulbert and Michael C. Anderson. The role of inhibition in learn-

ing. In Aaron S. Benjamin, J. Steven De Belle, Bruce Etnyre, and Thad A.

Polk, editors, Human Learning, volume 139 of Advances in Psychology, pages

7–20. North-Holland, 2008. doi: https://doi.org/10.1016/S0166-4115(08)

10002-4. URL https://www.sciencedirect.com/science/article/pii/

S0166411508100024.

[73] Konstantinos Iordanou, Timothy Atkinson, Emre Ozer, Jedrzej Kufel, Grace

Aligada, John Biggs, Gavin Brown, and Mikel Luján. Low-cost and efficient

144

https://api.semanticscholar.org/CorpusID:52048008
https://api.semanticscholar.org/CorpusID:52048008
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0166411508100024
https://www.sciencedirect.com/science/article/pii/S0166411508100024

prediction hardware for tabular data using tiny classifier circuits. Nature Elec-

tronics, 04 2024.

[74] Vikram Iyer, Hans Gaensbauer, Thomas Daniel, and Shyamnath Gollakota.

Wind dispersal of battery-free wireless devices. Nature, 603:1–7, 03 2022. doi:

10.1038/s41586-021-04363-9.

[75] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,

Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and

training of neural networks for efficient integer-arithmetic-only inference. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[76] Younghyun Jo and Seon Joo Kim. Practical single-image super-resolution

using look-up table. In 2021 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 691–700, 2021. doi: 10.1109/CVPR46437.

2021.00075.

[77] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-

rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,

Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy

Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaem-

maghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard

Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron

Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Kille-

brew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law,

Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon

MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-

jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-

nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir

Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

145

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson,

Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Wal-

ter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter performance

analysis of a tensor processing unit. SIGARCH Comput. Archit. News, 45

(2):1–12, jun 2017. ISSN 0163-5964. doi: 10.1145/3140659.3080246. URL

https://doi.org/10.1145/3140659.3080246.

[78] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for

nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(1):117–128, 2011. doi: 10.1109/TPAMI.2010.57.

[79] Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Ro-

knoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi,

Juan Gomez Luna, and Onur Mutlu. SMASH: Co-designing software compres-

sion and hardware-accelerated indexing for efficient sparse matrix operations.

In Proceedings of the 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’52, page 600–614, New York, NY, USA, 2019. As-

sociation for Computing Machinery. ISBN 9781450369381. doi: 10.1145/

3352460.3358286. URL https://doi.org/10.1145/3352460.3358286.

[80] Andressa Kappaun, Karine Camargo, Fabio Rangel, Fabŕıcio Firmino, Priscila

Machado Vieira Lima, and Jonice Oliveira. Evaluating binary encoding tech-

niques for WiSARD. In 2016 5th Brazilian Conference on Intelligent Systems

(BRACIS), pages 103–108, 2016. doi: 10.1109/BRACIS.2016.029.

[81] Mikail Khona, Sarthak Chandra, Joy J. Ma, and Ila R. Fiete. Winning the

lottery with neural connectivity constraints: Faster learning across cognitive

tasks with spatially constrained sparse rnns. Neural Computation, 35(11):

1850–1869, 2023. doi: 10.1162/neco a 01613.

[82] Kibeom Kim, Yongjo Jeong, Youngjoo Lee, and Sunggu Lee. Analysis of

counting Bloom filters used for count thresholding. Electronics, 8(7), 2019.

146

https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3352460.3358286

ISSN 2079-9292. doi: 10.3390/electronics8070779. URL https://www.mdpi.

com/2079-9292/8/7/779.

[83] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

International Conference on Learning Representations, 12 2014.

[84] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and Keisuke

Imoto. ToyADMOS: A dataset of miniature-machine operating sounds for

anomalous sound detection. In 2019 IEEE Workshop on Applications of Signal

Processing to Audio and Acoustics (WASPAA), pages 313–317, 2019. doi:

10.1109/WASPAA.2019.8937164.

[85] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey

Voas. DDoS in the IoT: Mirai and other botnets. Computer, 50:80–84, 01

2017. doi: 10.1109/MC.2017.201.

[86] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull.

Towards the development of realistic botnet dataset in the internet of things

for network forensic analytics: Bot-iot dataset, 2018. URL https://arxiv.

org/abs/1811.00701.

[87] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from

tiny images. Technical Report 0, University of Toronto, Toronto, Ontario, 2009.

[88] Tanishq Kumar, Kevin Luo, and Mark Sellke. No free prune: Information-

theoretic barriers to pruning at initialization. In Forty-first International Con-

ference on Machine Learning, 2024. URL https://openreview.net/forum?

id=Uzb45nolTb.

[89] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Pra-

teek Jain, Sham Kakade, and Ali Farhadi. Soft threshold weight reparam-

eterization for learnable sparsity. In Proceedings of the 37th International

Conference on Machine Learning, ICML’20. JMLR.org, 2020.

147

https://www.mdpi.com/2079-9292/8/7/779
https://www.mdpi.com/2079-9292/8/7/779
https://arxiv.org/abs/1811.00701
https://arxiv.org/abs/1811.00701
https://openreview.net/forum?id=Uzb45nolTb
https://openreview.net/forum?id=Uzb45nolTb

[90] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. Numba: a LLVM-based

Python JIT compiler. In Proceedings of the Second Workshop on the LLVM

Compiler Infrastructure in HPC, LLVM ’15, New York, NY, USA, 2015. As-

sociation for Computing Machinery. ISBN 9781450340052. doi: 10.1145/

2833157.2833162. URL https://doi.org/10.1145/2833157.2833162.

[91] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,

1998. doi: 10.1109/5.726791.

[92] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010.

URL http://yann.lecun.com/exdb/mnist/.

[93] Walter D. Leon-Salas, Thomas Fischer, Xiaozhe Fan, Golsa Moayeri, and

Shaocheng Luo. A 64×64 image energy harvesting configurable image sen-

sor. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1914–1917, 2016. doi: 10.1109/ISCAS.2016.7538947.

[94] Fengfu Li and Bin Liu. Ternary weight networks. CoRR, abs/1605.04711,

2016. URL http://arxiv.org/abs/1605.04711.

[95] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. FP-

BNN: Binarized neural network on FPGA. Neurocomputing, 275:1072–1086,

2018. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2017.

09.046. URL https://www.sciencedirect.com/science/article/pii/

S0925231217315655.

[96] James Lighthill. Artificial intelligence: A general survey. In Artificial Intelli-

gence: a paper symposium, 1973.

[97] Tao Lin, Sebastian U. Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi.

Dynamic model pruning with feedback. In International Conference on

148

https://doi.org/10.1145/2833157.2833162
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1605.04711
https://www.sciencedirect.com/science/article/pii/S0925231217315655
https://www.sciencedirect.com/science/article/pii/S0925231217315655

Learning Representations, 2020. URL https://openreview.net/forum?id=

SJem8lSFwB.

[98] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common

objects in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne

Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–755, Cham,

2014. Springer International Publishing. ISBN 978-3-319-10602-1.

[99] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.

Neural networks with few multiplications. CoRR, abs/1510.03009, 2016.

[100] Zhi-Gang Liu and Matthew Mattina. Learning low-precision neural networks

without straight-through estimator (STE). In Proceedings of the 28th Interna-

tional Joint Conference on Artificial Intelligence, IJCAI’19, page 3066–3072.

AAAI Press, 2019. ISBN 9780999241141.

[101] Teresa Ludermir, Andre de Carvalho, Antônio Braga, and M.C.P. Souto.

Weightless neural models: A review of current and past works. Neural Com-

puting Surveys, 2:41–61, 01 1999.

[102] Leopoldo A.D. Lusquino Filho, Luiz F.R. Oliveira, Aluizio Lima Filho,

Gabriel P. Guarisa, Lucca M. Felix, Priscila M.V. Lima, and Felipe M.G. França.

Extending the weightless WiSARD classifier for regression. Neurocomputing,

416:280–291, 2020. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.

2019.12.134. URL https://www.sciencedirect.com/science/article/

pii/S092523122030504X.

[103] Mostafa Mahmoud, Kevin Siu, and Andreas Moshovos. Diffy: a déjà vu-free

differential deep neural network accelerator. In 2018 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 134–147, 2018.

doi: 10.1109/MICRO.2018.00020.

149

https://openreview.net/forum?id=SJem8lSFwB
https://openreview.net/forum?id=SJem8lSFwB
https://www.sciencedirect.com/science/article/pii/S092523122030504X
https://www.sciencedirect.com/science/article/pii/S092523122030504X

[104] Philipp Mayer, Michele Magno, and Luca Benini. Combining microbial fuel

cell and ultra-low power event-driven audio detector for zero-power sensing in

underwater monitoring. In 2018 IEEE Sensors Applications Symposium (SAS),

pages 1–6, 2018. doi: 10.1109/SAS.2018.8336772.

[105] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Go-

ing deeper into neural networks, 2015. URL https://research.google/blog/

inceptionism-going-deeper-into-neural-networks/.

[106] Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set for

network intrusion detection systems (UNSW-NB15 network data set). In 2015

Military Communications and Information Systems Conference (MilCIS), pages

1–6, 2015. doi: 10.1109/MilCIS.2015.7348942.

[107] Pete Mowforth and Barry Shepherd. Statlog (Vehicle Silhouettes) dataset.

UCI Machine Learning Repository. URL https://doi.org/10.24432/

C5HG6N.

[108] C.E. Myers. Output functions for probabilistic logic nodes. In 1989 First

IEE International Conference on Artificial Neural Networks, (Conf. Publ. No.

313), pages 310–314, 1989.

[109] Shashank Nag, Zachary Susskind, Aman Arora, Alan T. L. Bacellar, Diego L. C.

Dutra, Igor D. S. Miranda, Krishnan Kailas, Eugene B. John, Mauricio Breter-

nitz Jr., Priscila M. V. Lima, Felipe M. G. França, and Lizy K. John. LogicNets

vs. ULEEN: Comparing two novel high throughput edge ML inference tech-

niques on FPGA. In Proceedings of the Midwest Symposium on Circuits and

Systems, MWSCAS ’24, page to appear. Institute of Electrical and Electronics

Engineers, 2024.

[110] Kenta Nakai. Ecoli dataset. UCI Machine Learning Repository, 1996. URL

https://doi.org/10.24432/C5388M.

150

https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
https://doi.org/10.24432/C5HG6N
https://doi.org/10.24432/C5HG6N
https://doi.org/10.24432/C5388M

[111] National Aeronautics and Space Administration. Statlog (Shuttle) dataset.

UCI Machine Learning Repository. URL https://doi.org/10.24432/

C5WS31.

[112] Nadia Nedjah, Felipe P. da Silva, Alan O. de Sá, Luiza M. Mourelle, and Di-

ana A. Bonilla. A massively parallel pipelined reconfigurable design for M-

PLN based neural networks for efficient image classification. Neurocomputing,

183:39–55, 2016. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.

2015.05.138. URL https://www.sciencedirect.com/science/article/

pii/S092523121501989X. Weightless Neural Systems.

[113] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi

Wang, and Bin Ren. PatDNN: Achieving Real-Time DNN Execution on Mobile

Devices with Pattern-Based Weight Pruning, page 907–922. Association for

Computing Machinery, New York, NY, USA, 2020. ISBN 9781450371025.

URL https://doi.org/10.1145/3373376.3378534.

[114] NVIDIA. NVIDIA H100 tensor core GPU architecture. Technical re-

port, NVIDIA Corporation, 2023. URL https://resources.nvidia.com/

en-us-tensor-core.

[115] NVIDIA. Using FP8 with transformer engine. Technical report, NVIDIA

Corporation, 2024. URL https://docs.nvidia.com/deeplearning/

transformer-engine/user-guide/examples/fp8_primer.html.

[116] Ryan O’Donnell. Analysis of boolean functions, 2021.

[117] R H Olsson, C Gordon, and R Bogoslovov. Zero and near zero power intelligent

microsystems. Journal of Physics: Conference Series, 1407(1):012042, nov

2019. doi: 10.1088/1742-6596/1407/1/012042. URL https://dx.doi.org/

10.1088/1742-6596/1407/1/012042.

151

https://doi.org/10.24432/C5WS31
https://doi.org/10.24432/C5WS31
https://www.sciencedirect.com/science/article/pii/S092523121501989X
https://www.sciencedirect.com/science/article/pii/S092523121501989X
https://doi.org/10.1145/3373376.3378534
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html
https://dx.doi.org/10.1088/1742-6596/1407/1/012042
https://dx.doi.org/10.1088/1742-6596/1407/1/012042

[118] Alessandro Pappalardo. Xilinx/brevitas, 2021. URL https://doi.org/10.

5281/zenodo.3333552.

[119] Nicholas Perrone and Robert Kao. A general finite difference method for

arbitrary meshes. Computers & Structures, 5(1):45–57, 1975. ISSN 0045-

7949. doi: https://doi.org/10.1016/0045-7949(75)90018-8. URL https://

www.sciencedirect.com/science/article/pii/0045794975900188.

[120] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Deep

differentiable logic gate networks. In S. Koyejo, S. Mohamed, A. Agarwal,

D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information

Processing Systems, volume 35, pages 2006–2018. Curran Associates, Inc.,

2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/

file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf.

[121] Chi-Sang Poon and Kuan Zhou. Neuromorphic silicon neurons and

large-scale neural networks: Challenges and opportunities. Frontiers

in Neuroscience, 5, 2011. ISSN 1662-453X. doi: 10.3389/fnins.2011.

00108. URL https://www.frontiersin.org/journals/neuroscience/

articles/10.3389/fnins.2011.00108.

[122] Jorge Portilla, Gabriel Mujica, Jin-Shyan Lee, and Teresa Riesgo. The extreme

edge at the bottom of the internet of things: A review. IEEE Sensors Journal,

19(9):3179–3190, 2019. doi: 10.1109/JSEN.2019.2891911.

[123] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.

XNOR-Net: Imagenet classification using binary convolutional neural networks.

CoRR, abs/1603.05279, 2016. URL http://arxiv.org/abs/1603.05279.

[124] Andres Rodriguez, Eden Segal, Etay Meiri, Evarist Fomenko, Young Jim Kim,

Haihao Shen, and Barukh Ziv. Lower numerical precision deep learning infer-

ence and training. Technical report, Intel Corporation, 2018. URL https:

152

https://doi.org/10.5281/zenodo.3333552
https://doi.org/10.5281/zenodo.3333552
https://www.sciencedirect.com/science/article/pii/0045794975900188
https://www.sciencedirect.com/science/article/pii/0045794975900188
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0d3496dd0cec77a999c98d35003203ca-Paper-Conference.pdf
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2011.00108
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2011.00108
http://arxiv.org/abs/1603.05279
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf

//www.intel.com/content/dam/develop/external/us/en/documents/

lower-numerical-precision-deep-learning-jan2018-754765.pdf.

[125] Frank Rosenblatt. Principles of Neurodynamics. Spartan Books, 1962.

[126] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. Nature, 323(6088):533–536, 10

1986. doi: 10.1038/323533a0.

[127] Arish S., Sharad Sinha, and Smitha K.G. Optimization of convolutional neural

networks on resource constrained devices. In 2019 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI), pages 19–24, 2019. doi: 10.1109/

ISVLSI.2019.00013.

[128] Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect

of dropping layers of pre-trained transformer models. Comput. Speech Lang.,

77(C), jan 2023. ISSN 0885-2308. doi: 10.1016/j.csl.2022.101429. URL

https://doi.org/10.1016/j.csl.2022.101429.

[129] Simone Salerno. micromlgen 1.1.28, 2022. URL https://pypi.org/project/

micromlgen/.

[130] Leandro Santiago, Leticia Verona, Fabio Rangel, Fabricio Firmino, Daniel S

Menasché, Wouter Caarls, Mauricio Breternitz Jr, Sandip Kundu, Priscila MV

Lima, and Felipe MG França. Weightless neural networks as memory seg-

mented Bloom filters. Neurocomputing, 416:292–304, 2020.

[131] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc

Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks:

The sparsely-gated mixture-of-experts layer. In International Conference on

Learning Representations, 2017. URL https://openreview.net/forum?id=

B1ckMDqlg.

153

https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/lower-numerical-precision-deep-learning-jan2018-754765.pdf
https://doi.org/10.1016/j.csl.2022.101429
https://pypi.org/project/micromlgen/
https://pypi.org/project/micromlgen/
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg

[132] David Slate. Letter Recognition dataset. UCI Machine Learning Repository,

1991. URL https://doi.org/10.24432/C5ZP40.

[133] Joram Soch. Proof: Quantile function of the normal distribution, 2020. URL

https://statproofbook.github.io/P/norm-qf.html.

[134] Ashwin Srinivasan. Statlog (Landsat Satellite) dataset. UCI Machine Learning

Repository, 1993. URL https://doi.org/10.24432/C55887.

[135] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. J. Mach. Learn. Res., 15(1):1929–1958, jan 2014. ISSN 1532-4435.

[136] Statista. Market size and revenue comparison for ar-

tificial intelligence worldwide from 2020 to 2030, 2024.

URL https://www.statista.com/statistics/941835/

artificial-intelligence-market-size-revenue-comparisons/.

[137] Zachary Susskind, Alan T.L. Bacellar, Aman Arora, Luis A.Q. Villon, Renan

Mendanha, Leandro S. De Araújo, Diego L.C. Dutra, Priscila M.V. Lima, Fe-

lipe M.G. França, Igor D.S. Miranda, Mauricio Breternitz, and Lizy K. John.

Pruning weightless neural networks. In ESANN 2022 proceedings, European

Symposium on Artificial Neural Networks, Computational Intelligence and Ma-

chine Learning, pages 37–42, 2022. doi: http://dx.doi.org/10.14428/esann/

2022.ES2022-55.

[138] Zachary Susskind, Aman Arora, Alan T. L. Bacellar, Diego L. C. Dutra,

Igor D. S. Miranda, Mauricio Breternitz, Priscila M. V. Lima, Felipe M. G.

França, and Lizy K. John. An FPGA-based weightless neural network for

edge network intrusion detection. In Proceedings of the 2023 ACM/SIGDA

International Symposium on Field Programmable Gate Arrays, FPGA ’23,

154

https://doi.org/10.24432/C5ZP40
https://statproofbook.github.io/P/norm-qf.html
https://doi.org/10.24432/C55887
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/
https://www.statista.com/statistics/941835/artificial-intelligence-market-size-revenue-comparisons/

page 232, New York, NY, USA, 2023. Association for Computing Machin-

ery. ISBN 9781450394178. doi: 10.1145/3543622.3573140. URL https:

//doi.org/10.1145/3543622.3573140.

[139] Zachary Susskind, Aman Arora, Igor D. S. Miranda, Alan T. L. Bacellar, Luis

A. Q. Villon, Rafael F. Katopodis, Leandro S. de Araújo, Diego L. C. Dutra,

Priscila M. V. Lima, Felipe M. G. França, Mauricio Breternitz Jr., and Lizy K.

John. ULEEN: A novel architecture for ultra-low-energy edge neural networks.

ACM Trans. Archit. Code Optim., 20(4), dec 2023. ISSN 1544-3566. doi:

10.1145/3629522. URL https://doi.org/10.1145/3629522.

[140] Zachary Susskind, Aman Arora, Igor D. S. Miranda, Luis A. Q. Villon, Rafael F.

Katopodis, Leandro S. de Araújo, Diego L. C. Dutra, Priscila M. V. Lima,

Felipe M. G. França, Mauricio Breternitz, and Lizy K. John. Weightless

neural networks for efficient edge inference. In Proceedings of the Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT

’22, page 279–290, New York, NY, USA, 2023. Association for Computing

Machinery. ISBN 9781450398688. doi: 10.1145/3559009.3569680. URL

https://doi.org/10.1145/3559009.3569680.

[141] Telefonaktiebolaget LM Ericsson. IoT connections outlook. Ericsson Mobility

Report, 2023. URL https://www.ericsson.com/en/reports-and-papers/

mobility-report/dataforecasts/iot-connections-outlook.

[142] Vitor A.M.F. Torres, Brayan R.A. Jaimes, Eduardo S. Ribeiro, Mateus T.

Braga, Elcio H. Shiguemori, Haroldo F.C. Velho, Luiz C.B. Torres, and

Antonio P. Braga. Combined weightless neural network FPGA architec-

ture for deforestation surveillance and visual navigation of UAVs. Engi-

neering Applications of Artificial Intelligence, 87:103227, 2020. ISSN 0952-

1976. doi: https://doi.org/10.1016/j.engappai.2019.08.021. URL https:

//www.sciencedirect.com/science/article/pii/S095219761930212X.

155

https://doi.org/10.1145/3543622.3573140
https://doi.org/10.1145/3543622.3573140
https://doi.org/10.1145/3629522
https://doi.org/10.1145/3559009.3569680
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/iot-connections-outlook
https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/iot-connections-outlook
https://www.sciencedirect.com/science/article/pii/S095219761930212X
https://www.sciencedirect.com/science/article/pii/S095219761930212X

[143] Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri Strukov,

and Timothy Sherwood. Boosted race trees for low energy classification.

In Proceedings of the Twenty-Fourth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS

’19, page 215–228, New York, NY, USA, 2019. Association for Computing

Machinery. ISBN 9781450362405. doi: 10.1145/3297858.3304036. URL

https://doi.org/10.1145/3297858.3304036.

[144] J.R. Ullmann. Experiments with the n-tuple method of pattern recognition.

IEEE Transactions on Computers, C-18(12):1135–1137, 1969. doi: 10.1109/

T-C.1969.222599.

[145] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott,

Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A framework for

fast, scalable binarized neural network inference. In Proceedings of the 2017

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

FPGA ’17, page 65–74, New York, NY, USA, 2017. Association for Comput-

ing Machinery. ISBN 9781450343541. doi: 10.1145/3020078.3021744. URL

https://doi.org/10.1145/3020078.3021744.

[146] Yaman Umuroglu, Yash Akhauri, Nicholas J. Fraser, and Michaela Blott. Log-

icNets: Co-designed neural networks and circuits for extreme-throughput ap-

plications, 2020.

[147] Unknown. Bank fraud detection dataset. URL https://www.kaggle.com/

volodymyrgavrysh/fraud-detection-bank-dataset-20k-records-binary.

[148] Mart van Baalen, Andrey Kuzmin, Suparna S Nair, Yuwei Ren, Eric Mahurin,

Chirag Patel, Sundar Subramanian, Sanghyuk Lee, Markus Nagel, Joseph So-

riaga, and Tijmen Blankevoort. FP8 versus INT8 for efficient deep learning

inference, 2023.

156

https://doi.org/10.1145/3297858.3304036
https://doi.org/10.1145/3020078.3021744
https://www.kaggle.com/volodymyrgavrysh/fraud-detection-bank- dataset-20k-records-binary
https://www.kaggle.com/volodymyrgavrysh/fraud-detection-bank- dataset-20k-records-binary

[149] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is

all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 30. Curran Associates, Inc.,

2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[150] Luis A.Q. Villon, Zachary Susskind, Alan T.L. Bacellar, Igor D.S. Miranda,

Leandro S. de Araújo, Priscila M.V. Lima, Mauricio Breternitz, Lizy K. John,

Felipe M.G. França, and Diego L.C. Dutra. A conditional branch predictor

based on weightless neural networks. Neurocomputing, 555:126637, 2023. ISSN

0925-2312. doi: https://doi.org/10.1016/j.neucom.2023.126637. URL https:

//www.sciencedirect.com/science/article/pii/S0925231223007609.

[151] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets

before training by preserving gradient flow. In International Conference on

Learning Representations, 2020. URL https://openreview.net/forum?id=

SkgsACVKPH.

[152] Erwei Wang, James J. Davis, Peter Y. K. Cheung, and George A. Constan-

tinides. LUTNet: Rethinking inference in FPGA soft logic, 2019.

[153] Pete Warden. Speech commands: A dataset for limited-vocabulary speech

recognition, 2018. URL https://arxiv.org/abs/1804.03209.

[154] Paul J. Werbos. Applications of advances in nonlinear sensitivity analysis.

In R. F. Drenick and F. Kozin, editors, System Modeling and Optimization,

pages 762–770, Berlin, Heidelberg, 1982. Springer Berlin Heidelberg. ISBN

978-3-540-39459-4.

[155] Daniel Whiteson. HIGGS dataset. UCI Machine Learning Repository, 2014.

URL https://doi.org/10.24432/C5V312.

157

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0925231223007609
https://www.sciencedirect.com/science/article/pii/S0925231223007609
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=SkgsACVKPH
https://arxiv.org/abs/1804.03209
https://doi.org/10.24432/C5V312

[156] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,

Marat Dukhan, Kim Hazelwood, Eldad Isaac, Yangqing Jia, Bill Jia, Tommer

Leyvand, Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe Spisak, Fei Sun,

Andrew Tulloch, Peter Vajda, Xiaodong Wang, Yanghan Wang, Bram Wasti,

Yiming Wu, Ran Xian, Sungjoo Yoo, and Peizhao Zhang. Machine learning at

Facebook: Understanding inference at the edge. In 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 331–

344, 2019. doi: 10.1109/HPCA.2019.00048.

[157] Pedro Xavier, Massimo De Gregorio, Felipe M. G. França, and Priscila M. V.

Lima. Detection of elementary particles with the WiSARD n-tuple classifier.

In 28th European Symposium on Artificial Neural Networks, Computational In-

telligence and Machine Learning, ESANN 2020, Bruges, Belgium, October 2-4,

2020, pages 643–648, 2020. URL https://www.esann.org/sites/default/

files/proceedings/2020/ES2020-170.pdf.

[158] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image

dataset for benchmarking machine learning algorithms, 2017.

[159] Xilinx. 7 series FPGAs configurable logic block user guide, 2016. URL https:

//docs.xilinx.com/v/u/en-US/ug474_7Series_CLB.

[160] Xilinx. Xilinx Power Estimator (XPE). 2021. URL https://www.xilinx.

com/products/technology/power/xpe.html.

[161] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley J. Osher, Yingyong Qi,

and Jack Xin. Understanding straight-through estimator in training activation

quantized neural nets. CoRR, abs/1903.05662, 2019. URL http://arxiv.

org/abs/1903.05662.

[162] Pengmiao Zhang, Neelesh Gupta, Rajgopal Kannan, and Viktor K. Prasanna.

Attention, distillation, and tabularization: Towards practical neural network-

based prefetching, 2024.

158

https://www.esann.org/sites/default/files/proceedings/2020/ES2020-170.pdf
https://www.esann.org/sites/default/files/proceedings/2020/ES2020-170.pdf
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://docs.xilinx.com/v/u/en-US/ug474_7Series_CLB
https://www.xilinx.com/products/technology/power/xpe.html
https://www.xilinx.com/products/technology/power/xpe.html
http://arxiv.org/abs/1903.05662
http://arxiv.org/abs/1903.05662

[163] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,

Tianshi Chen, and Yunji Chen. Cambricon-X: An accelerator for sparse neu-

ral networks. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 1–12, 2016. doi: 10.1109/MICRO.2016.

7783723.

[164] Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. SpArch: Effi-

cient architecture for sparse matrix multiplication. In 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 261–

274, 2020. doi: 10.1109/HPCA47549.2020.00030.

[165] Xingyu Zhou, Robert Canady, Shunxing Bao, and Aniruddha Gokhale. Cost-

effective hardware accelerator recommendation for edge computing. In 3rd

USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX

Association, June 2020. URL https://www.usenix.org/conference/

hotedge20/presentation/zhou-xingyu.

[166] Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary

quantization. In 5th International Conference on Learning Representations,

ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceed-

ings. OpenReview.net, 2017. URL https://openreview.net/forum?id=S1_

pAu9xl.

159

https://www.usenix.org/conference/hotedge20/presentation/zhou-xingyu
https://www.usenix.org/conference/hotedge20/presentation/zhou-xingyu
https://openreview.net/forum?id=S1_pAu9xl
https://openreview.net/forum?id=S1_pAu9xl

Vita

Zachary Susskind was born in Houston, Texas. He received his Bachelor of

Science in Electrical Engineering from The University of Texas at Austin in 2019 and

continued immediately onward to graduate school. Throughout his undergraduate

and graduate studies, he has completed a total of six internships at NVIDIA. He is a

student member of the IEEE.

Address: ZSusskind@utexas.edu

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

160

	List of Tables
	List of Figures
	Chapter 1: Introduction
	Problem Description and Motivation
	Thesis Statement
	Contributions of this Dissertation
	Organization of this Dissertation

	Chapter 2: Background and Related Work
	Weightless Neural Networks
	Origins of Weightless Neural Networks
	The WiSARD Classifier
	Improving WiSARD
	Other Weightless Neural Models
	Weightless Neural Networks on Edge Devices

	Deep Neural Networks
	Optimizing DNNs for Edge Inference
	Binary Neural Networks
	Tabularization of DNNs

	Other Approaches to Efficient Machine Learning

	Chapter 3: Methodology
	Model Development Methodology
	Training Weightless Models
	Converting Models for Inference

	Model Deployment and Evaluation Methodology
	Area, Power, and Performance Evaluation on FPGAs
	Performance Evaluation on Microcontrollers

	Evaluation Metrics
	List of Datasets

	Chapter 4: Improved Compression and Encoding for Weightless Neural Networks
	The BTHOWeN Model
	Efficient, Hardware-Friendly Hashing
	Counting Bloom Filters
	General Nonlinear Thermometer Encoding

	BTHOWeN Software Model
	BTHOWeN Inference Accelerator
	Evaluation Methodology
	Results
	Selected BTHOWeN Models
	Comparison with Iso-Accuracy DNN Models
	Comparison with Bloom WiSARD
	Comparison with Prior FPGA-based WNN
	Model Sweeping Analysis

	Summary

	Chapter 5: Multi-Pass Learning with Weightless Ensembles
	The ULEEN Model
	Multi-Pass, Gradient-Based Learning for WNNs
	Additive Submodel Ensembles
	RAM Node Pruning

	ULEEN Software Model
	ULEEN Inference Accelerator
	Evaluation Methodology
	Datasets
	Implementation

	Results
	Software Model Comparison of ULEEN with BNNs
	FPGA Implementation Comparison of ULEEN with FINN
	Sensitivity Analysis

	Comparing ULEEN with Xilinx LogicNets
	Summary

	Chapter 6: Multilayer Weightless Neural Networks
	Motivation
	False Positive Rates for Bloom Filters
	Elimination of Hash Computation
	LUT Sharing

	Learning Rules for Multilayer WNNs
	Finite Difference Learning Rule
	LUTs as Subnetwork Equivalents
	Alpha-Blending
	Extended Finite Difference

	Optimizing DWNs
	Regularization Strategies
	Ternary Summation
	Learnable Mapping
	Other Optimizations Explored

	DWN Software Model
	DWN Inference Accelerator
	DWNs on Microcontrollers
	Bit-packed Implementation
	Unpacked Implementation

	Evaluation Methodology
	Results
	Selected Models
	FPGA Implementation Results
	Microcontroller Implementation Results
	Sensitivity Analysis
	Additional Comparisons

	Summary

	Chapter 7: Conclusion
	Summary
	Future Work

	Works Cited
	Vita

